IRGen: Generative Modeling for Image Retrieval
- URL: http://arxiv.org/abs/2303.10126v4
- Date: Tue, 23 Jul 2024 23:52:19 GMT
- Title: IRGen: Generative Modeling for Image Retrieval
- Authors: Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, Qi Chen, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Mao Yang, Qingmin Liao, Jingdong Wang, Baining Guo,
- Abstract summary: In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
- Score: 82.62022344988993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While generative modeling has become prevalent across numerous research fields, its integration into the realm of image retrieval remains largely unexplored and underjustified. In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling and employing a sequence-to-sequence model. This approach is harmoniously aligned with the current trend towards unification in research, presenting a cohesive framework that allows for end-to-end differentiable searching. This, in turn, facilitates superior performance via direct optimization techniques. The development of our model, dubbed IRGen, addresses the critical technical challenge of converting an image into a concise sequence of semantic units, which is pivotal for enabling efficient and effective search. Extensive experiments demonstrate that our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks as well as two million-scale datasets, yielding significant improvement compared to prior competitive retrieval methods. In addition, the notable surge in precision scores facilitated by generative modeling presents the potential to bypass the reranking phase, which is traditionally indispensable in practical retrieval workflows.
Related papers
- Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step [77.86514804787622]
Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks.
We provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation.
We propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation.
arXiv Detail & Related papers (2025-01-23T18:59:43Z) - Distillation of Diffusion Features for Semantic Correspondence [23.54555663670558]
We propose a novel knowledge distillation technique to overcome the problem of reduced efficiency.
We show how to use two large vision foundation models and distill the capabilities of these complementary models into one smaller model that maintains high accuracy at reduced computational cost.
Our empirical results demonstrate that our distilled model with 3D data augmentation achieves performance superior to current state-of-the-art methods while significantly reducing computational load and enhancing practicality for real-world applications, such as semantic video correspondence.
arXiv Detail & Related papers (2024-12-04T17:55:33Z) - Fashion Image-to-Image Translation for Complementary Item Retrieval [13.88174783842901]
We introduce the Generative Compatibility Model (GeCo), a two-stage approach that improves fashion image retrieval through paired image-to-image translation.
Evaluations on three datasets show that GeCo outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-08-19T09:50:20Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - A Visual Navigation Perspective for Category-Level Object Pose
Estimation [41.60364392204057]
This paper studies category-level object pose estimation based on a single monocular image.
Recent advances in pose-aware generative models have paved the way for addressing this challenging task using analysis-by-synthesis.
arXiv Detail & Related papers (2022-03-25T10:57:37Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.