論文の概要: Video shutter angle estimation using optical flow and linear blur
- arxiv url: http://arxiv.org/abs/2303.10247v2
- Date: Wed, 17 Apr 2024 13:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:59:48.013879
- Title: Video shutter angle estimation using optical flow and linear blur
- Title(参考訳): 光フローと線形ぼかしを用いたビデオシャッター角推定
- Authors: David Korcak, Jiri Matas,
- Abstract要約: 本研究では,動きを含むビデオクリップのシャッター角,すなわち露出率を推定する手法を提案する。
この手法は露光率、光流、線形運動のぼかしの関係を利用する。
フレーム除去や挿入によるビデオ改ざん検出のための法医学的応用法として,本手法の妥当性を検証した。
- 参考スコア(独自算出の注目度): 24.63316659365843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for estimating the shutter angle, a.k.a. exposure fraction - the ratio of the exposure time and the reciprocal of frame rate - of videoclips containing motion. The approach exploits the relation of the exposure fraction, optical flow, and linear motion blur. Robustness is achieved by selecting image patches where both the optical flow and blur estimates are reliable, checking their consistency. The method was evaluated on the publicly available Beam-Splitter Dataset with a range of exposure fractions from 0.015 to 0.36. The best achieved mean absolute error of estimates was 0.039. We successfully test the suitability of the method for a forensic application of detection of video tampering by frame removal or insertion
- Abstract(参考訳): 動きを含むビデオクリップの露出時間とフレームレートの相反比である露光率を推定する手法を提案する。
この手法は露光率、光流、線形運動のぼかしの関係を利用する。
ロバスト性は、光学フローとボケ推定の両方が信頼できる画像パッチを選択して、一貫性をチェックすることで達成される。
この手法は一般に公開されているビームスプリッターデータセットで0.015から0.36までの露光率で評価された。
推定値の平均絶対誤差は0.039である。
フレーム除去・挿入によるビデオ改ざん検出の法医学的応用のための手法の適性検証に成功した。
関連論文リスト
- Robust estimation of exposure ratios in multi-exposure image stacks [12.449313419096821]
入力画像から直接露光率を推定する。
カメラノイズによる推定誤差を最小限に抑えるために,一対の露光から画素を選択できる最適化問題として露出時間推定を導出する。
複数の空間タイルから画素を収集することにより、カメラや物体の動きによる画素の不一致に容易に対応できることを示す。
論文 参考訳(メタデータ) (2023-08-05T23:42:59Z) - Exposure Fusion for Hand-held Camera Inputs with Optical Flow and
PatchMatch [53.149395644547226]
ハンドヘルドカメラによるマルチ露光画像融合のためのハイブリッド合成法を提案する。
提案手法は,このような動作に対処し,各入力の露光情報を効果的に維持する。
実験の結果,本手法の有効性とロバスト性を示した。
論文 参考訳(メタデータ) (2023-04-10T09:06:37Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
本研究では,より現実的で挑戦的なタスク – 複数フレームのジョイントビデオと,未知の露光時間下での劣化 – を野心的に目標とする。
我々はまず,入力されたぼやけたフレームから露出認識表現を構築するために,教師付きコントラスト学習の変種を採用する。
次に、プログレッシブ露光適応型畳み込みと動き改善による露出と動きの表現に基づいて、映像再構成ネットワークを構築した。
論文 参考訳(メタデータ) (2023-03-27T09:43:42Z) - CuDi: Curve Distillation for Efficient and Controllable Exposure
Adjustment [86.97592472794724]
そこで我々は, 対や不対のデータを必要とせず, 効率よくかつ制御可能な露光調整のためのCuDi曲線蒸留法を提案する。
提案手法は,ゼロ参照学習と曲線ベースのフレームワークを,実効的な低照度画像強調手法であるゼロDCEから継承する。
提案手法は, 高速で頑健でフレキシブルな性能に優れ, 実シーンにおける最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-28T17:53:46Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
本稿では,イベントカメラからの高密度光フロー推定に特徴相関と逐次処理を導入することを提案する。
提案手法は、高密度光流を計算し、MVSEC上での終点誤差を23%削減する。
論文 参考訳(メタデータ) (2021-08-24T07:39:08Z) - MBA-VO: Motion Blur Aware Visual Odometry [99.56896875807635]
運動のぼかしは視覚計測法に残る主要な課題の1つである。
露光時間が長い低照度条件では、比較的遅いカメラの動きでも動きのぼやけが現れます。
露光時間内にカメラの局所軌道をモデル化し,推定する,直接的なアプローチによる新しいハイブリッド視覚オドメトリーパイプラインを提案する。
論文 参考訳(メタデータ) (2021-03-25T09:02:56Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。