論文の概要: Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth
- arxiv url: http://arxiv.org/abs/2303.10269v1
- Date: Fri, 17 Mar 2023 22:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 20:22:51.962231
- Title: Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth
- Title(参考訳): 孤立化と帯域幅を増強した量子デバイスのためのファノクビット
- Authors: Deepanshu Trivedi, Leonid Belostotski, Arjuna Madanayake, and Alex
Krasnok
- Abstract要約: 磁気光学アイソレータやサーキュレータは、読み出し段階での反射やノイズから量子デバイスを保護するために広く用いられている。
本稿では, 量子非相互性に対する新しいアプローチを提案し, 量子ビットの固有非線形性と空間対称性の破れを利用する。
ローレンツ型量子ビットを含む回路は、非対称なスペクトル応答を持つファノ型量子ビットに変換可能であることを示す。
- 参考スコア(独自算出の注目度): 0.6105362142646117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magneto-optical isolators and circulators have been widely used to safeguard
quantum devices from reflections and noise in the readout stage. However, these
devices have limited bandwidth, low tunability, are bulky, and suffer from high
losses, making them incompatible with planar technologies such as circuit QED.
To address these limitations, we propose a new approach to quantum
non-reciprocity that utilizes the intrinsic nonlinearity of qubits and broken
spatial symmetry. We show that a circuit containing Lorentz-type qubits can be
transformed into Fano-type qubits with an asymmetric spectral response,
resulting in a significant improvement in isolation (up to 40 dB) and a twofold
increase in spectral bandwidth (up to 200 MHz). Our analysis is based on
realistic circuit parameters, validated by existing experimental results, and
supported by rigorous quantum simulations. This approach could enable the
development of compact, high-performance, and planar-compatible non-reciprocal
quantum devices with potential applications in quantum computing,
communication, and sensing.
- Abstract(参考訳): 磁気光学アイソレータやサーキュレータは、読み出し段階での反射やノイズから量子デバイスを保護するために広く用いられている。
しかし、これらのデバイスは帯域幅が限られており、調整性も低く、ばらばらであり、高い損失を被り、回路QEDのような平面技術と互換性がない。
これらの制限に対処するために,量子非相反性に対する新しいアプローチを提案し,量子ビットの固有非線形性と空間対称性の破れを利用した。
ローレンツ型量子ビットを含む回路は、非対称なスペクトル応答を持つファノ型量子ビットに変換できるため、分離(最大40db)と2倍のスペクトル帯域幅(最大200mhz)が向上した。
本解析は実回路パラメータに基づき, 既存の実験結果により検証され, 厳密な量子シミュレーションによって支援されている。
このアプローチは、量子コンピューティング、通信、センシングに潜在的に適用可能な、コンパクトで高性能で平面互換の非相互量子デバイスの開発を可能にする。
関連論文リスト
- Toward high-fidelity quantum information processing and quantum
simulation with spin qubits and phonons [0.0]
連続的動的デカップリング法の応用は量子状態のコヒーレンスを大幅に向上させることを示す。
このアプローチは、スピンとフォノンを持つ中規模および大規模量子デバイスへの現実的なパスを提供する。
論文 参考訳(メタデータ) (2024-02-26T19:01:08Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Parametric Amplification and NonClassical Correlations due to 45
nm nMOS Circuitry Effect [2.0481796917798407]
本研究は、量子回路における半導体技術の利用の画期的な探索を明らかにする。
この新しい量子デバイスは、量子信号を増幅する量子パラメトリック増幅器として機能するだけでなく、信号固有の量子特性も強化する。
論文 参考訳(メタデータ) (2023-10-25T05:55:50Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Modelling semiconductor spin qubits and their charge noise environment
for quantum gate fidelity estimation [0.9406493726662083]
半導体量子ドットに閉じ込められた電子のスピンは量子ビット(量子ビット)の実装の有望な候補である。
本稿では、二重量子ドット(DQD)デバイスと荷電ノイズ環境のための共モデリングフレームワークを提案する。
量子ゲート誤差と量子ドット閉じ込めの逆相関を求める。
論文 参考訳(メタデータ) (2022-10-10T10:12:54Z) - A gate-tunable graphene Josephson parametric amplifier [0.31458406135473804]
超伝導量子回路は、マイクロ波量子光学の劇的な進歩に寄与している。
量子ビットのような超伝導パラメトリック増幅器は、一般的にジョセフソン接合を磁気的に調整可能で散逸のない非線形性の源として利用する。
ここではグラフェンジョセフソン接合を利用したパラメトリック増幅器を示し、その動作周波数がゲート電圧で広く調整可能であることを示す。
論文 参考訳(メタデータ) (2022-04-05T13:00:40Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum Dot-Based Parametric Amplifiers [0.0]
量子制限ノイズ性能に近づいたジョセフソンパラメトリック増幅器(JPAs)は超伝導量子ビットの高忠実な読み出しを可能にし、最近では半導体量子ドット(QD)も実現している。
電子2レベル系における量子容量は、パラメトリック増幅のための代替の散逸のない非線形素子を提供することができる。
1.8GHz超伝導ランプ素子マイクロ波空洞に埋没したCMOSナノワイヤスプリットゲートトランジスタにおけるQD-Reservoir電子遷移を用いた位相感度パラメトリック増幅実験を行った。
論文 参考訳(メタデータ) (2021-11-23T12:40:47Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
超伝導回路は、高い忠実度で量子情報を保存および処理する機会を提供する。
ノイズ保護デバイスは、計算状態が主に局所的なノイズチャネルから切り離される新しい種類の量子ビットを構成する。
このパースペクティブは、これらの新しい量子ビットの中心にある理論原理をレビューし、最近の実験について述べ、超伝導量子ビットにおける量子情報の堅牢な符号化の可能性を強調している。
論文 参考訳(メタデータ) (2021-06-18T18:00:13Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
現在の量子プロセッサに関連するシステムパラメータに対する多体ローカライズド(MBL)位相の変動の安定性について検討する。
これらのコンピューティングプラットフォームは、制御不能なカオス的変動のフェーズに危険なほど近いことが分かりました。
論文 参考訳(メタデータ) (2020-12-10T19:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。