Inverse Cubature and Quadrature Kalman filters
- URL: http://arxiv.org/abs/2303.10322v2
- Date: Fri, 19 Apr 2024 08:20:56 GMT
- Title: Inverse Cubature and Quadrature Kalman filters
- Authors: Himali Singh, Kumar Vijay Mishra, Arpan Chattopadhyay,
- Abstract summary: We develop inverse cubature KF (I-CKF), inverse quadrature KF (I-QKF), and inverse cubature-quadrature KF (I-CQKF)
We derive the stability conditions for the proposed filters in the exponential-mean-squared-boundedness sense and prove the filters' consistency.
- Score: 16.975704972827305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in inverse cognition with cognitive radar has led to the development of inverse stochastic filters that are employed by the target to infer the information the cognitive radar may have learned. Prior works addressed this inverse cognition problem by proposing inverse Kalman filter (I-KF) and inverse extended KF (I-EKF), respectively, for linear and non-linear Gaussian state-space models. However, in practice, many counter-adversarial settings involve highly non-linear system models, wherein EKF's linearization often fails. In this paper, we consider the efficient numerical integration techniques to address such non-linearities and, to this end, develop inverse cubature KF (I-CKF), inverse quadrature KF (I-QKF), and inverse cubature-quadrature KF (I-CQKF). For the unknown system model case, we develop reproducing kernel Hilbert space (RKHS)-based CKF. We derive the stochastic stability conditions for the proposed filters in the exponential-mean-squared-boundedness sense and prove the filters' consistency. Numerical experiments demonstrate the estimation accuracy of our I-CKF, I-QKF, and I-CQKF with the recursive Cram\'{e}r-Rao lower bound as a benchmark.
Related papers
- Inverse Particle Filter [16.975704972827305]
In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system's cognitive response.
This paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF)
The particle filter framework employs Monte Carlo (MC) methods to approximate arbitrary posterior distributions.
arXiv Detail & Related papers (2024-07-23T16:32:38Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Optimization or Architecture: How to Hack Kalman Filtering [52.640789351385266]
In non-linear filtering, it is traditional to compare non-linear architectures such as neural networks to the standard linear Kalman Filter (KF)
We argue that both should be optimized similarly, and to that end present the Optimized KF (OKF)
arXiv Detail & Related papers (2023-10-01T14:00:18Z) - Inverse Unscented Kalman Filter [16.975704972827305]
A cognitive 'adversary' tracks its target of interest via a framework such as a Kalman filter (KF)
The target or 'defender' then employs another inverse unscented filter to infer the forward filter estimates of the defender computed by the adversary.
For linear systems, the inverse Kalman filter (I-KF) has been recently shown to be effective in these counter-adversarial applications.
arXiv Detail & Related papers (2023-04-04T10:51:43Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Counter-Adversarial Learning with Inverse Unscented Kalman Filter [18.244578289687123]
In counter-adversarial systems, to infer the strategy of an intelligent adversarial agent, the defender agent needs to cognitively sense the information that the adversary has gathered about the latter.
We formulate inverse cognition as a nonlinear Gaussian state-space model.
We then derive theoretical guarantees for the stability of IUKF in the mean-squared boundedness sense.
arXiv Detail & Related papers (2022-10-01T20:31:47Z) - Inverse Extended Kalman Filter -- Part II: Highly Non-Linear and
Uncertain Systems [18.244578289687123]
This paper proposes an inverse extended Kalman filter (I-EKF) to address the inverse filtering problem in non-linear systems.
Part I: Theory of I-EKF (with and without unknown inputs) and I-KF (with unknown inputs)
Part II: Theory of I-EKF (with and without unknown inputs) and I-KF (with unknown inputs)
arXiv Detail & Related papers (2022-08-13T16:55:39Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Inverse Extended Kalman Filter -- Part I: Fundamentals [19.078991171384015]
In this paper, we develop the theory of inverse extended Kalman filter (I-EKF) in detail.
We provide theoretical stability guarantees using both bounded non-linearity and unknown matrix approaches.
In the companion paper (Part II), we propose reproducing kernel Hilbert space-based EKF to handle incomplete system model information.
arXiv Detail & Related papers (2022-01-05T10:56:58Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
We study the problem of generating adversarial examples in a black-box setting, where we only have access to a zeroth order oracle.
We use this setting to find fast one-step adversarial attacks, akin to a black-box version of the Fast Gradient Sign Method(FGSM)
We show that the method uses fewer queries and achieves higher attack success rates than the current state of the art.
arXiv Detail & Related papers (2020-10-08T18:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.