Closed-form Filtering for Non-linear Systems
- URL: http://arxiv.org/abs/2402.09796v1
- Date: Thu, 15 Feb 2024 08:51:49 GMT
- Title: Closed-form Filtering for Non-linear Systems
- Authors: Th\'eophile Cantelobre, Carlo Ciliberto, Benjamin Guedj, Alessandro
Rudi
- Abstract summary: We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
- Score: 83.91296397912218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential Bayesian Filtering aims to estimate the current state distribution
of a Hidden Markov Model, given the past observations. The problem is
well-known to be intractable for most application domains, except in notable
cases such as the tabular setting or for linear dynamical systems with gaussian
noise. In this work, we propose a new class of filters based on Gaussian PSD
Models, which offer several advantages in terms of density approximation and
computational efficiency. We show that filtering can be efficiently performed
in closed form when transitions and observations are Gaussian PSD Models. When
the transition and observations are approximated by Gaussian PSD Models, we
show that our proposed estimator enjoys strong theoretical guarantees, with
estimation error that depends on the quality of the approximation and is
adaptive to the regularity of the transition probabilities. In particular, we
identify regimes in which our proposed filter attains a TV $\epsilon$-error
with memory and computational complexity of $O(\epsilon^{-1})$ and
$O(\epsilon^{-3/2})$ respectively, including the offline learning step, in
contrast to the $O(\epsilon^{-2})$ complexity of sampling methods such as
particle filtering.
Related papers
- Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference [0.8388591755871735]
This study presents a Bayesian maximum textitaposteriori (MAP) framework for dynamical system identification from time-series data.
arXiv Detail & Related papers (2024-01-30T12:16:52Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
arXiv Detail & Related papers (2023-10-21T01:34:30Z) - An adaptive ensemble filter for heavy-tailed distributions: tuning-free
inflation and localization [0.3749861135832072]
Heavy tails is a common feature of filtering distributions that results from the nonlinear dynamical and observation processes.
We propose an algorithm to estimate the prior-to-posterior update from samples of joint forecast distribution of the states and observations.
We demonstrate the benefits of this new ensemble filter on challenging filtering problems.
arXiv Detail & Related papers (2023-10-12T21:56:14Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Multiplicative Gaussian Particle Filter [18.615555573235987]
We propose a new sampling-based approach for approximate inference in filtering problems.
Instead of approximating conditional distributions with a finite set of states, as done in particle filters, our approach approximates the distribution with a weighted sum of functions from a set of continuous functions.
arXiv Detail & Related papers (2020-02-29T09:19:38Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.