The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2304.05206v1
- Date: Tue, 11 Apr 2023 13:15:33 GMT
- Title: The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting
- Authors: Lu Han, Han-Jia Ye, De-Chuan Zhan
- Abstract summary: We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
- Score: 50.48888534815361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series data comprises various channels of variables. The
multivariate forecasting models need to capture the relationship between the
channels to accurately predict future values. However, recently, there has been
an emergence of methods that employ the Channel Independent (CI) strategy.
These methods view multivariate time series data as separate univariate time
series and disregard the correlation between channels. Surprisingly, our
empirical results have shown that models trained with the CI strategy
outperform those trained with the Channel Dependent (CD) strategy, usually by a
significant margin. Nevertheless, the reasons behind this phenomenon have not
yet been thoroughly explored in the literature. This paper provides
comprehensive empirical and theoretical analyses of the characteristics of
multivariate time series datasets and the CI/CD strategy. Our results conclude
that the CD approach has higher capacity but often lacks robustness to
accurately predict distributionally drifted time series. In contrast, the CI
approach trades capacity for robust prediction. Practical measures inspired by
these analyses are proposed to address the capacity and robustness dilemma,
including a modified CD method called Predict Residuals with Regularization
(PRReg) that can surpass the CI strategy. We hope our findings can raise
awareness among researchers about the characteristics of multivariate time
series and inspire the construction of better forecasting models.
Related papers
- DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTS is a tailored framework for modeling disentangled channel evolving patterns in general time series forecasting.
We introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics.
arXiv Detail & Related papers (2024-10-30T12:46:14Z) - Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
We propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM.
The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters.
arXiv Detail & Related papers (2024-10-03T03:13:15Z) - From Similarity to Superiority: Channel Clustering for Time Series Forecasting [61.96777031937871]
We develop a novel and adaptable Channel Clustering Module ( CCM)
CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities.
CCM can boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively.
arXiv Detail & Related papers (2024-03-31T02:46:27Z) - MCformer: Multivariate Time Series Forecasting with Mixed-Channels Transformer [8.329947472853029]
Channel Independence (CI) strategy treats all channels as a single channel, expanding the dataset.
Mixed Channels strategy combines the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting.
Model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information.
arXiv Detail & Related papers (2024-03-14T09:43:07Z) - Dance of Channel and Sequence: An Efficient Attention-Based Approach for
Multivariate Time Series Forecasting [3.372816393214188]
CSformer is an innovative framework characterized by a meticulously engineered two-stage self-attention mechanism.
We introduce sequence adapters and channel adapters, ensuring the model's ability to discern salient features across various dimensions.
arXiv Detail & Related papers (2023-12-11T09:10:38Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
We develop a novel framework for inferring the intrinsic latent factors implied by the observable time series.
We introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models.
Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting.
arXiv Detail & Related papers (2023-03-18T14:37:37Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.