Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation
- URL: http://arxiv.org/abs/2303.10452v2
- Date: Tue, 29 Aug 2023 06:32:06 GMT
- Title: Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation
- Authors: Xiyu Wang, Yuecong Xu, Jianfei Yang, Bihan Wen, Alex C. Kot
- Abstract summary: Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
- Score: 62.458968086881555
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Continuous Video Domain Adaptation (CVDA) is a scenario where a source model
is required to adapt to a series of individually available changing target
domains continuously without source data or target supervision. It has wide
applications, such as robotic vision and autonomous driving. The main
underlying challenge of CVDA is to learn helpful information only from the
unsupervised target data while avoiding forgetting previously learned knowledge
catastrophically, which is out of the capability of previous Video-based
Unsupervised Domain Adaptation methods. Therefore, we propose a
Confidence-Attentive network with geneRalization enhanced self-knowledge
disTillation (CART) to address the challenge in CVDA. Firstly, to learn from
unsupervised domains, we propose to learn from pseudo labels. However, in
continuous adaptation, prediction errors can accumulate rapidly in pseudo
labels, and CART effectively tackles this problem with two key modules.
Specifically, The first module generates refined pseudo labels using model
predictions and deploys a novel attentive learning strategy. The second module
compares the outputs of augmented data from the current model to the outputs of
weakly augmented data from the source model, forming a novel consistency
regularization on the model to alleviate the accumulation of prediction errors.
Extensive experiments suggest that the CVDA performance of CART outperforms
existing methods by a considerable margin.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - Continual Source-Free Unsupervised Domain Adaptation [37.060694803551534]
Existing Source-free Unsupervised Domain Adaptation approaches exhibit catastrophic forgetting.
We propose a Continual SUDA (C-SUDA) framework to cope with the challenge of SUDA in a continual learning setting.
arXiv Detail & Related papers (2023-04-14T20:11:05Z) - SRoUDA: Meta Self-training for Robust Unsupervised Domain Adaptation [25.939292305808934]
Unsupervised domain adaptation (UDA) can transfer knowledge learned from rich-label dataset to unlabeled target dataset.
In this paper, we present a new meta self-training pipeline, named SRoUDA, for improving adversarial robustness of UDA models.
arXiv Detail & Related papers (2022-12-12T14:25:40Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - Distill and Fine-tune: Effective Adaptation from a Black-box Source
Model [138.12678159620248]
Unsupervised domain adaptation (UDA) aims to transfer knowledge in previous related labeled datasets (source) to a new unlabeled dataset (target)
We propose a novel two-step adaptation framework called Distill and Fine-tune (Dis-tune)
arXiv Detail & Related papers (2021-04-04T05:29:05Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.