Report of the Medical Image De-Identification (MIDI) Task Group -- Best Practices and Recommendations
- URL: http://arxiv.org/abs/2303.10473v3
- Date: Sun, 16 Mar 2025 18:47:00 GMT
- Title: Report of the Medical Image De-Identification (MIDI) Task Group -- Best Practices and Recommendations
- Authors: David A. Clunie, Adam Flanders, Adam Taylor, Brad Erickson, Brian Bialecki, David Brundage, David Gutman, Fred Prior, J Anthony Seibert, John Perry, Judy Wawira Gichoya, Justin Kirby, Katherine Andriole, Luke Geneslaw, Steve Moore, TJ Fitzgerald, Wyatt Tellis, Ying Xiao, Keyvan Farahani,
- Abstract summary: This report addresses the technical aspects of de-identification of medical images of human subjects and biospecimens.<n>Only de-identification of publicly released data is considered.<n>Alternative approaches to privacy, such as federated learning for artificial intelligence (AI) model development, are out of scope.
- Score: 2.0719223149506028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report addresses the technical aspects of de-identification of medical images of human subjects and biospecimens, such that re-identification risk of ethical, moral, and legal concern is sufficiently reduced to allow unrestricted public sharing for any purpose, regardless of the jurisdiction of the source and distribution sites. All medical images, regardless of the mode of acquisition, are considered, though the primary emphasis is on those with accompanying data elements, especially those encoded in formats in which the data elements are embedded, particularly Digital Imaging and Communications in Medicine (DICOM). These images include image-like objects such as Segmentations, Parametric Maps, and Radiotherapy (RT) Dose objects. The scope also includes related non-image objects, such as RT Structure Sets, Plans and Dose Volume Histograms, Structured Reports, and Presentation States. Only de-identification of publicly released data is considered, and alternative approaches to privacy preservation, such as federated learning for artificial intelligence (AI) model development, are out of scope, as are issues of privacy leakage from AI model sharing. Only technical issues of public sharing are addressed.
Related papers
- Medical Image De-Identification Resources: Synthetic DICOM Data and Tools for Validation [0.10617782943195009]
Ensuring patient privacy remains a significant challenge for open-access data sharing.<n>Digital Imaging and Communications in Medicine (DICOM) encodes both essential clinical metadata and extensive protected health information (PHI) and personally identifiable information (PII)<n>To address this gap, we developed an openly accessible DICOM dataset infused with synthetic PHI/PII and an evaluation framework for benchmarking image de-identification.
arXiv Detail & Related papers (2025-08-03T18:48:28Z) - DICOM De-Identification via Hybrid AI and Rule-Based Framework for Scalable, Uncertainty-Aware Redaction [0.0]
This paper presents a hybrid de-identification framework that combines rule-based and AI-driven techniques.<n>Our solution addresses critical challenges in medical data de-identification and supports the secure, ethical, and trustworthy release of imaging data for research.
arXiv Detail & Related papers (2025-07-31T17:19:38Z) - Medical Multimodal Model Stealing Attacks via Adversarial Domain Alignment [79.41098832007819]
Medical multimodal large language models (MLLMs) are becoming an instrumental part of healthcare systems.
As medical data is scarce and protected by privacy regulations, medical MLLMs represent valuable intellectual property.
We introduce Adversarial Domain Alignment (ADA-STEAL), the first stealing attack against medical MLLMs.
arXiv Detail & Related papers (2025-02-04T16:04:48Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.
This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - De-Identification of Medical Imaging Data: A Comprehensive Tool for Ensuring Patient Privacy [4.376648893167674]
Open-source tool can be used to de-identify DICOM magnetic resonance images, computer images, whole slide images and magnetic resonance twix raw data.
Proposal comprises an elaborate anonymization pipeline for multiple types of inputs, reducing the need for additional tools used for de-identification of imaging data.
arXiv Detail & Related papers (2024-10-16T09:31:24Z) - Plaintext-Free Deep Learning for Privacy-Preserving Medical Image Analysis via Frequency Information Embedding [9.192156293063414]
This paper proposes a novel framework that uses surrogate images for analysis.
The framework is called Frequency-domain Exchange Style Fusion (FESF)
Our framework effectively preserves the privacy of medical images and maintains diagnostic accuracy of DL models at a relatively high level, proving its effectiveness across various datasets and DL-based models.
arXiv Detail & Related papers (2024-03-25T06:56:38Z) - RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text
Supervision [44.00149519249467]
Language-supervised pre-training has proven to be a valuable method for extracting semantically meaningful features from images.
We introduce RAD-DINO, a biomedical image encoder pre-trained solely on unimodal biomedical imaging data.
arXiv Detail & Related papers (2024-01-19T17:02:17Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Data Augmentation: a Combined Inductive-Deductive Approach featuring
Answer Set Programming [1.1060425537315088]
We propose a framework for synthesizing photo-realistic images via advanced Data Augmentation techniques.
The resulting labeled images undergo a dedicated process based on Deep Learning in charge of creating photo-realistic images that comply with the generated label.
arXiv Detail & Related papers (2023-10-22T21:02:26Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
We propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners.
Experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets.
arXiv Detail & Related papers (2022-12-04T08:49:14Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis [1.3079444139643956]
We present a novel method that learns to ignore the scanner-related features present in the images, while learning features relevant for the classification task.
Our method outperforms state-of-the-art domain adaptation methods on a classification task between Multiple Sclerosis patients and healthy subjects.
arXiv Detail & Related papers (2021-10-13T15:40:50Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.