Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis
- URL: http://arxiv.org/abs/2110.06803v1
- Date: Wed, 13 Oct 2021 15:40:50 GMT
- Title: Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis
- Authors: Julia Wolleb, Robin Sandk\"uhler, Muhamed Barakovic, Athina
Papadopoulou, Nouchine Hadjikhani, \"Ozg\"ur Yaldizli, Jens Kuhle, Cristina
Granziera, Philippe C. Cattin
- Abstract summary: We present a novel method that learns to ignore the scanner-related features present in the images, while learning features relevant for the classification task.
Our method outperforms state-of-the-art domain adaptation methods on a classification task between Multiple Sclerosis patients and healthy subjects.
- Score: 1.3079444139643956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited availability of large image datasets is a major issue in the
development of accurate and generalizable machine learning methods in medicine.
The limitations in the amount of data are mainly due to the use of different
acquisition protocols, different hardware, and data privacy. At the same time,
training a classification model on a small dataset leads to a poor
generalization quality of the model. To overcome this issue, a combination of
various image datasets of different provenance is often used, e.g., multi-site
studies. However, if an additional dataset does not include all classes of the
task, the learning of the classification model can be biased to the device or
place of acquisition.
This is especially the case for Magnetic Resonance (MR) images, where
different MR scanners introduce a bias that limits the performance of the
model. In this paper, we present a novel method that learns to ignore the
scanner-related features present in the images, while learning features
relevant for the classification task. We focus on a real-world scenario, where
only a small dataset provides images of all classes. We exploit this
circumstance by introducing specific additional constraints on the latent
space, which lead the focus on disease-related rather than scanner-specific
features. Our method Learn to Ignore outperforms state-of-the-art domain
adaptation methods on a multi-site MRI dataset on a classification task between
Multiple Sclerosis patients and healthy subjects.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Generalized Multi-Task Learning from Substantially Unlabeled
Multi-Source Medical Image Data [11.061381376559053]
MultiMix is a new multi-task learning model that jointly learns disease classification and anatomical segmentation in a semi-supervised manner.
Our experiments with varying quantities of multi-source labeled data in the training sets confirm the effectiveness of MultiMix.
arXiv Detail & Related papers (2021-10-25T18:09:19Z) - Active Selection of Classification Features [0.0]
Auxiliary data, such as demographics, might help in selecting a smaller sample that comprises the individuals with the most informative MRI scans.
We propose two utility-based approaches for this problem, and evaluate their performance on three public real-world benchmark datasets.
arXiv Detail & Related papers (2021-02-26T18:19:08Z) - Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation [40.41161371507547]
We develop a data augmentation method for one-shot brain magnetic resonance imaging (MRI) image segmentation.
Our method exploits only one labeled MRI image (named atlas) and a few unlabeled images.
Our method outperforms the state-of-the-art one-shot medical segmentation methods.
arXiv Detail & Related papers (2021-02-03T12:28:04Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
Convolutional Neural Networks (CNNs) have shown to be powerful medical image segmentation models.
We advocate for multi-task learning, i.e., training a single model on several different datasets.
We show that not only a single CNN learns to automatically recognize the context and accurately segment the organ of interest in each context, but also that such a joint model often has more accurate and better-calibrated predictions.
arXiv Detail & Related papers (2020-04-12T23:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.