AdaptGuard: Defending Against Universal Attacks for Model Adaptation
- URL: http://arxiv.org/abs/2303.10594v2
- Date: Mon, 27 Nov 2023 13:02:06 GMT
- Title: AdaptGuard: Defending Against Universal Attacks for Model Adaptation
- Authors: Lijun Sheng, Jian Liang, Ran He, Zilei Wang, Tieniu Tan
- Abstract summary: We study the vulnerability to universal attacks transferred from the source domain during model adaptation algorithms.
We propose a model preprocessing framework, named AdaptGuard, to improve the security of model adaptation algorithms.
- Score: 129.2012687550069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model adaptation aims at solving the domain transfer problem under the
constraint of only accessing the pretrained source models. With the increasing
considerations of data privacy and transmission efficiency, this paradigm has
been gaining recent popularity. This paper studies the vulnerability to
universal attacks transferred from the source domain during model adaptation
algorithms due to the existence of malicious providers. We explore both
universal adversarial perturbations and backdoor attacks as loopholes on the
source side and discover that they still survive in the target models after
adaptation. To address this issue, we propose a model preprocessing framework,
named AdaptGuard, to improve the security of model adaptation algorithms.
AdaptGuard avoids direct use of the risky source parameters through knowledge
distillation and utilizes the pseudo adversarial samples under adjusted radius
to enhance the robustness. AdaptGuard is a plug-and-play module that requires
neither robust pretrained models nor any changes for the following model
adaptation algorithms. Extensive results on three commonly used datasets and
two popular adaptation methods validate that AdaptGuard can effectively defend
against universal attacks and maintain clean accuracy in the target domain
simultaneously. We hope this research will shed light on the safety and
robustness of transfer learning. Code is available at
https://github.com/TomSheng21/AdaptGuard.
Related papers
- Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
We explore the potential backdoor attacks on model adaptation launched by well-designed poisoning target data.
We propose a plug-and-play method named MixAdapt, combining it with existing adaptation algorithms.
arXiv Detail & Related papers (2024-01-11T16:42:10Z) - Genetic Algorithm-Based Dynamic Backdoor Attack on Federated
Learning-Based Network Traffic Classification [1.1887808102491482]
We propose GABAttack, a novel genetic algorithm-based backdoor attack against federated learning for network traffic classification.
This research serves as an alarming call for network security experts and practitioners to develop robust defense measures against such attacks.
arXiv Detail & Related papers (2023-09-27T14:02:02Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
We study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation.
We propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA.
arXiv Detail & Related papers (2021-05-28T23:06:26Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.