SKED: Sketch-guided Text-based 3D Editing
- URL: http://arxiv.org/abs/2303.10735v4
- Date: Fri, 18 Aug 2023 21:32:50 GMT
- Title: SKED: Sketch-guided Text-based 3D Editing
- Authors: Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or, Ali
Mahdavi-Amiri
- Abstract summary: We present SKED, a technique for editing 3D shapes represented by NeRFs.
Our technique utilizes as few as two guiding sketches from different views to alter an existing neural field.
We propose novel loss functions to generate the desired edits while preserving the density and radiance of the base instance.
- Score: 49.019881133348775
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Text-to-image diffusion models are gradually introduced into computer
graphics, recently enabling the development of Text-to-3D pipelines in an open
domain. However, for interactive editing purposes, local manipulations of
content through a simplistic textual interface can be arduous. Incorporating
user guided sketches with Text-to-image pipelines offers users more intuitive
control. Still, as state-of-the-art Text-to-3D pipelines rely on optimizing
Neural Radiance Fields (NeRF) through gradients from arbitrary rendering views,
conditioning on sketches is not straightforward. In this paper, we present
SKED, a technique for editing 3D shapes represented by NeRFs. Our technique
utilizes as few as two guiding sketches from different views to alter an
existing neural field. The edited region respects the prompt semantics through
a pre-trained diffusion model. To ensure the generated output adheres to the
provided sketches, we propose novel loss functions to generate the desired
edits while preserving the density and radiance of the base instance. We
demonstrate the effectiveness of our proposed method through several
qualitative and quantitative experiments. https://sked-paper.github.io/
Related papers
- Sketch2NeRF: Multi-view Sketch-guided Text-to-3D Generation [37.93542778715304]
We present a sketch-guided text-to-3D generation framework (namely, Sketch2NeRF) to add sketch control to 3D generation.
Our method achieves state-of-the-art performance in terms of sketch similarity and text alignment.
arXiv Detail & Related papers (2024-01-25T15:49:12Z) - Learning Naturally Aggregated Appearance for Efficient 3D Editing [94.47518916521065]
We propose to replace the color field with an explicit 2D appearance aggregation, also called canonical image.
To avoid the distortion effect and facilitate convenient editing, we complement the canonical image with a projection field that maps 3D points onto 2D pixels for texture lookup.
Our representation, dubbed AGAP, well supports various ways of 3D editing (e.g., stylization, interactive drawing, and content extraction) with no need of re-optimization.
arXiv Detail & Related papers (2023-12-11T18:59:31Z) - Control3D: Towards Controllable Text-to-3D Generation [107.81136630589263]
We present a text-to-3D generation conditioning on the additional hand-drawn sketch, namely Control3D.
A 2D conditioned diffusion model (ControlNet) is remoulded to guide the learning of 3D scene parameterized as NeRF.
We exploit a pre-trained differentiable photo-to-sketch model to directly estimate the sketch of the rendered image over synthetic 3D scene.
arXiv Detail & Related papers (2023-11-09T15:50:32Z) - Directional Texture Editing for 3D Models [51.31499400557996]
ITEM3D is designed for automatic textbf3D object editing according to the text textbfInstructions.
Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation.
arXiv Detail & Related papers (2023-09-26T12:01:13Z) - Blocks2World: Controlling Realistic Scenes with Editable Primitives [5.541644538483947]
We present Blocks2World, a novel method for 3D scene rendering and editing.
Our technique begins by extracting 3D parallelepipeds from various objects in a given scene using convex decomposition.
The next stage involves training a conditioned model that learns to generate images from the 2D-rendered convex primitives.
arXiv Detail & Related papers (2023-07-07T21:38:50Z) - TAPS3D: Text-Guided 3D Textured Shape Generation from Pseudo Supervision [114.56048848216254]
We present a novel framework, TAPS3D, to train a text-guided 3D shape generator with pseudo captions.
Based on rendered 2D images, we retrieve relevant words from the CLIP vocabulary and construct pseudo captions using templates.
Our constructed captions provide high-level semantic supervision for generated 3D shapes.
arXiv Detail & Related papers (2023-03-23T13:53:16Z) - Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and
Text-to-Image Diffusion Models [44.34479731617561]
We introduce explicit 3D shape priors into the CLIP-guided 3D optimization process.
We present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model.
Our method, Dream3D, is capable of generating imaginative 3D content with superior visual quality and shape accuracy.
arXiv Detail & Related papers (2022-12-28T18:23:47Z) - 3DDesigner: Towards Photorealistic 3D Object Generation and Editing with
Text-guided Diffusion Models [71.25937799010407]
We equip text-guided diffusion models to achieve 3D-consistent generation.
We study 3D local editing and propose a two-step solution.
We extend our model to perform one-shot novel view synthesis.
arXiv Detail & Related papers (2022-11-25T13:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.