Learning Naturally Aggregated Appearance for Efficient 3D Editing
- URL: http://arxiv.org/abs/2312.06657v1
- Date: Mon, 11 Dec 2023 18:59:31 GMT
- Title: Learning Naturally Aggregated Appearance for Efficient 3D Editing
- Authors: Ka Leong Cheng and Qiuyu Wang and Zifan Shi and Kecheng Zheng and
Yinghao Xu and Hao Ouyang and Qifeng Chen and Yujun Shen
- Abstract summary: We propose to replace the color field with an explicit 2D appearance aggregation, also called canonical image.
To avoid the distortion effect and facilitate convenient editing, we complement the canonical image with a projection field that maps 3D points onto 2D pixels for texture lookup.
Our representation, dubbed AGAP, well supports various ways of 3D editing (e.g., stylization, interactive drawing, and content extraction) with no need of re-optimization.
- Score: 94.47518916521065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields, which represent a 3D scene as a color field and a
density field, have demonstrated great progress in novel view synthesis yet are
unfavorable for editing due to the implicitness. In view of such a deficiency,
we propose to replace the color field with an explicit 2D appearance
aggregation, also called canonical image, with which users can easily customize
their 3D editing via 2D image processing. To avoid the distortion effect and
facilitate convenient editing, we complement the canonical image with a
projection field that maps 3D points onto 2D pixels for texture lookup. This
field is carefully initialized with a pseudo canonical camera model and
optimized with offset regularity to ensure naturalness of the aggregated
appearance. Extensive experimental results on three datasets suggest that our
representation, dubbed AGAP, well supports various ways of 3D editing (e.g.,
stylization, interactive drawing, and content extraction) with no need of
re-optimization for each case, demonstrating its generalizability and
efficiency. Project page is available at https://felixcheng97.github.io/AGAP/.
Related papers
- 3D Gaussian Editing with A Single Image [19.662680524312027]
We introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting.
Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint.
Experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation.
arXiv Detail & Related papers (2024-08-14T13:17:42Z) - DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing [72.54566271694654]
We consider the problem of editing 3D objects and scenes based on open-ended language instructions.
A common approach to this problem is to use a 2D image generator or editor to guide the 3D editing process.
This process is often inefficient due to the need for iterative updates of costly 3D representations.
arXiv Detail & Related papers (2024-04-29T17:59:30Z) - MoDA: Modeling Deformable 3D Objects from Casual Videos [84.29654142118018]
We propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation without skin-collapsing artifacts.
In the endeavor to register 2D pixels across different frames, we establish a correspondence between canonical feature embeddings that encodes 3D points within the canonical space.
Our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-17T13:49:04Z) - PaletteNeRF: Palette-based Appearance Editing of Neural Radiance Fields [60.66412075837952]
We present PaletteNeRF, a novel method for appearance editing of neural radiance fields (NeRF) based on 3D color decomposition.
Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases.
We extend our framework with compressed semantic features for semantic-aware appearance editing.
arXiv Detail & Related papers (2022-12-21T00:20:01Z) - VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids [42.74658047803192]
State-of-the-art 3D-aware generative models rely on coordinate-based parameterize 3D radiance fields.
Existing approaches often render low-resolution feature maps and process them with an upsampling network to obtain the final image.
In contrast to existing approaches, our method requires only a single forward pass to generate a full 3D scene.
arXiv Detail & Related papers (2022-06-15T17:44:22Z) - Decomposing NeRF for Editing via Feature Field Distillation [14.628761232614762]
editing a scene represented by a NeRF is challenging as the underlying connectionist representations are not object-centric or compositional.
In this work, we tackle the problem of semantic scene decomposition of NeRFs to enable query-based local editing.
We propose to distill the knowledge of off-the-shelf, self-supervised 2D image feature extractors into a 3D feature field optimized in parallel to the radiance field.
arXiv Detail & Related papers (2022-05-31T07:56:09Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.