論文の概要: Improved Benthic Classification using Resolution Scaling and SymmNet
Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2303.10960v1
- Date: Mon, 20 Mar 2023 09:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 16:13:38.648209
- Title: Improved Benthic Classification using Resolution Scaling and SymmNet
Unsupervised Domain Adaptation
- Title(参考訳): 分解能スケーリングとSymNet非教師なしドメイン適応によるベツ分類の改善
- Authors: Heather Doig, Oscar Pizarro and Stefan B. Williams
- Abstract要約: 空間分解能の正規化のために,SymmNetの最先端Unsupervised Domain Adaptation法を,効率的な双線形プール層と画像スケーリングにより適用する。
その結果, トレーニング画像と異なるAUVサーベイから, 画像の精度を大幅に向上させるため, 汎用領域適応を向上できることが示唆された。
- 参考スコア(独自算出の注目度): 8.35780131268962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Underwater Vehicles (AUVs) conduct regular visual surveys of
marine environments to characterise and monitor the composition and diversity
of the benthos. The use of machine learning classifiers for this task is
limited by the low numbers of annotations available and the many fine-grained
classes involved. In addition to these challenges, there are domain shifts
between image sets acquired during different AUV surveys due to changes in
camera systems, imaging altitude, illumination and water column properties
leading to a drop in classification performance for images from a different
survey where some or all these elements may have changed. This paper proposes a
framework to improve the performance of a benthic morphospecies classifier when
used to classify images from a different survey compared to the training data.
We adapt the SymmNet state-of-the-art Unsupervised Domain Adaptation method
with an efficient bilinear pooling layer and image scaling to normalise spatial
resolution, and show improved classification accuracy. We test our approach on
two datasets with images from AUV surveys with different imaging payloads and
locations. The results show that generic domain adaptation can be enhanced to
produce a significant increase in accuracy for images from an AUV survey that
differs from the training images.
- Abstract(参考訳): 自律型水中車両(AUV)は海洋環境の定期的な視覚調査を行い、ベントスの構成と多様性を特徴付け、監視する。
このタスクに機械学習の分類器を使用することは、利用可能なアノテーションの数が少なく、関連する多くのきめ細かいクラスによって制限される。
これらの課題に加えて、カメラシステム、画像高度、照明、水柱特性の変化により、異なるAUV調査で取得した画像セット間のドメインシフトがあり、これらの要素が変更される可能性がある別の調査からの画像の分類性能が低下する。
本稿では,訓練データと異なる調査から画像の分類を行う際に,良性形態素分類器の性能を向上させる枠組みを提案する。
高速2線形プーリング層と画像スケーリングにより空間分解能を正規化し,分類精度を向上したsymmnetの非教師なし領域適応法を適用した。
我々は、異なる画像ペイロードと位置を持つAUVサーベイの画像を含む2つのデータセットに対するアプローチをテストする。
その結果, トレーニング画像と異なるAUVサーベイから, 画像の精度を大幅に向上させるため, 汎用領域適応を向上できることが示唆された。
関連論文リスト
- On Vision Transformers for Classification Tasks in Side-Scan Sonar Imagery [0.0]
サイドスキャンソナー (SSS) 画像は海底の人工物体の分類においてユニークな課題を呈している。
本稿では、SSS画像のバイナリ分類タスクによく使用されるCNNアーキテクチャとともに、VTモデルの性能を厳格に比較する。
ViTベースのモデルは、f1スコア、精度、リコール、精度の指標で優れた分類性能を示す。
論文 参考訳(メタデータ) (2024-09-18T14:36:50Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
このようなドメイン定義なしでドメイン適応を行うための自己教師付きドメイン非依存ドメイン適応(SS(DA)2)手法を提案する。
まず,2つの衛星画像パッチ間で画像と画像の変換を行うために,生成ネットワークのトレーニングを行う。
そして、異なる試験スペクトル特性でトレーニングデータを増強することにより、下流モデルの一般化性を向上させる。
論文 参考訳(メタデータ) (2023-09-20T07:37:23Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Exploring Vision Transformers for Fine-grained Classification [0.0]
アーキテクチャ変更を必要とせずに情報領域をローカライズする,きめ細かな画像分類タスクのための多段階ViTフレームワークを提案する。
CUB-200-2011,Stanford Cars,Stanford Dogs,FGVC7 Plant Pathologyの4つのベンチマークを用いて,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-06-19T23:57:31Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
対象ドメインに対するCNNの一般化能力を向上させるために,新しいドメイン指向特徴埋め込み(DoFE)フレームワークを提案する。
私たちのDoFEフレームワークは、マルチソースドメインから学んだ追加のドメイン事前知識で、画像機能を動的に強化します。
本フレームワークは、未確認データセットのセグメンテーション結果を満足して生成し、他の領域の一般化やネットワークの正規化手法を超越する。
論文 参考訳(メタデータ) (2020-10-13T07:28:39Z) - Data Augmentation via Mixed Class Interpolation using Cycle-Consistent
Generative Adversarial Networks Applied to Cross-Domain Imagery [16.870604081967866]
機械学習による物体検出と非可視画像内の分類は多くの分野において重要な役割を担っている。
しかし、このような応用は、限られた量の非可視領域画像のためにしばしば苦しむ。
本稿では,可視光帯域画像を利用した新しいデータ拡張手法の提案と評価を行う。
論文 参考訳(メタデータ) (2020-05-05T18:53:38Z) - Cross-Domain Few-Shot Classification via Learned Feature-Wise
Transformation [109.89213619785676]
各クラスにラベル付き画像がほとんどない新しいカテゴリを識別することを目的としている。
既存のメトリックベースの数ショット分類アルゴリズムは、クエリ画像の特徴埋め込みとラベル付き画像の特徴埋め込みを比較して、カテゴリを予測する。
有望な性能が証明されているが、これらの手法は目に見えない領域に一般化できないことが多い。
論文 参考訳(メタデータ) (2020-01-23T18:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。