論文の概要: Can AI-Generated Text be Reliably Detected?
- arxiv url: http://arxiv.org/abs/2303.11156v1
- Date: Fri, 17 Mar 2023 17:53:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 15:10:43.910502
- Title: Can AI-Generated Text be Reliably Detected?
- Title(参考訳): AI生成したテキストは確実に検出できるのか?
- Authors: Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao
Wang and Soheil Feizi
- Abstract要約: 大きな言語モデル(LLM)は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、特定のパターンをインプリントする透かし技術を適用するか、この問題に対処しようとしている。
本稿では,実証的および理論的に,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
これらの結果は、AI生成テキストの倫理的かつ信頼性の高い使用に関するコミュニティの正直な会話を開こうとしています。
- 参考スコア(独自算出の注目度): 43.25648146726716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid progress of Large Language Models (LLMs) has made them capable of
performing astonishingly well on various tasks including document completion
and question answering. The unregulated use of these models, however, can
potentially lead to malicious consequences such as plagiarism, generating fake
news, spamming, etc. Therefore, reliable detection of AI-generated text can be
critical to ensure the responsible use of LLMs. Recent works attempt to tackle
this problem either using certain model signatures present in the generated
text outputs or by applying watermarking techniques that imprint specific
patterns onto them. In this paper, both empirically and theoretically, we show
that these detectors are not reliable in practical scenarios. Empirically, we
show that paraphrasing attacks, where a light paraphraser is applied on top of
the generative text model, can break a whole range of detectors, including the
ones using the watermarking schemes as well as neural network-based detectors
and zero-shot classifiers. We then provide a theoretical impossibility result
indicating that for a sufficiently good language model, even the best-possible
detector can only perform marginally better than a random classifier. Finally,
we show that even LLMs protected by watermarking schemes can be vulnerable
against spoofing attacks where adversarial humans can infer hidden watermarking
signatures and add them to their generated text to be detected as text
generated by the LLMs, potentially causing reputational damages to their
developers. We believe these results can open an honest conversation in the
community regarding the ethical and reliable use of AI-generated text.
- Abstract(参考訳): LLM(Large Language Models)の急速な進歩により、文書補完や質問応答といった様々なタスクで驚くほどうまく機能するようになりました。
しかし、これらのモデルの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
したがって、信頼できるai生成テキストの検出は、llmの責任ある使用を保証するために重要である。
最近の研究では、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、特定のパターンをインプリントする透かし技術を適用することでこの問題に対処しようとしている。
本稿では,実験的および理論的にこれらの検出器が実用シナリオでは信頼性に乏しいことを示す。
実験により、生成テキストモデル上に光パラフレーズが適用されるパラフレーズ攻撃は、ウォーターマーキングスキームやニューラルネットワークベースの検出器、ゼロショット分類器などを含む全範囲の検出器を破壊できることを示す。
そして, 十分な良質な言語モデルでは, 最善の確率検出器であっても, ランダム分類器よりもわずかによい性能しか発揮できないことを示す理論的不確実性結果を示す。
最後に,ウォーターマーキングスキームで保護されているllmであっても,悪意のある人間が隠れたウォーターマーキングサインを推測し,生成したテキストにそれを付加することで,llmが生成したテキストとして検出され,開発者の評判を損なう可能性があることを示す。
これらの結果は、AI生成テキストの倫理的かつ信頼性の高い使用に関するコミュニティの正直な会話を開こうとしています。
関連論文リスト
- Adversarial Attacks on AI-Generated Text Detection Models: A Token Probability-Based Approach Using Embeddings [14.150011713654331]
本研究では,Fast-DetectGPTなどの検出モデルに対する新たなテキスト逆攻撃を提案する。
この手法では、AI生成したテキストの再構築を目的として、データ摂動の埋め込みモデルを用いて、テキストの真の起源を検出する可能性を低減する。
論文 参考訳(メタデータ) (2025-01-31T10:06:27Z) - DAMAGE: Detecting Adversarially Modified AI Generated Text [0.13108652488669736]
既存のAI検出器の多くが、人間化されたテキストを検出できないことを示す。
偽陽性率を低く保ちながら、人間化されたAIテキストを検出する頑健なモデルを実証する。
論文 参考訳(メタデータ) (2025-01-06T23:43:49Z) - MOSAIC: Multiple Observers Spotting AI Content, a Robust Approach to Machine-Generated Text Detection [35.67613230687864]
大規模言語モデル(LLM)は大規模に訓練され、強力なテキスト生成能力を備えている。
人文テキストから人工的に生成されたものを自動判別する様々な提案がなされている。
それぞれの強みを組み合わせるための、理論上は新たなアプローチを導出します。
種々のジェネレータLSMを用いた実験により,本手法がロバスト検出性能を効果的に導くことが示唆された。
論文 参考訳(メタデータ) (2024-09-11T20:55:12Z) - SilverSpeak: Evading AI-Generated Text Detectors using Homoglyphs [0.0]
ホモグリフベースの攻撃は、最先端のAI生成テキスト検出器を効果的に回避することができる。
以上の結果から,ホモグリフによる攻撃が,最先端の検出器を効果的に回避できることが示唆された。
論文 参考訳(メタデータ) (2024-06-17T06:07:32Z) - The Impact of Prompts on Zero-Shot Detection of AI-Generated Text [4.337364406035291]
チャットベースのアプリケーションでは、ユーザーは一般的にAI生成テキストのプロンプトを入力し、利用する。
本稿では,AI生成テキストの検出精度に対するプロンプトの影響を実証的に分析するための評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-29T11:33:34Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
本稿では,パラフレーズ生成モデル(DIPPER)を提案する。
DIPPERを使って3つの大きな言語モデル(GPT3.5-davinci-003)で生成されたテキストを言い換えると、透かしを含むいくつかの検出器を回避できた。
我々は,言語モデルAPIプロバイダによって維持されなければならない,意味論的に類似した世代を検索するシンプルなディフェンスを導入する。
論文 参考訳(メタデータ) (2023-03-23T16:29:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。