論文の概要: Convergence Guarantees of Overparametrized Wide Deep Inverse Prior
- arxiv url: http://arxiv.org/abs/2303.11265v1
- Date: Mon, 20 Mar 2023 16:49:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 14:33:29.898687
- Title: Convergence Guarantees of Overparametrized Wide Deep Inverse Prior
- Title(参考訳): 過パラメータ広奥行き逆前駆の収束保証
- Authors: Nathan Buskulic, Yvain Qu\'eau, Jalal Fadili
- Abstract要約: 逆優先法(Inverse Priors)は、ランダムな入力をフォワードモデルの下で画像が観察に一致するオブジェクトに変換する、教師なしのアプローチである。
本研究では, 連続時間勾配勾配勾配からトレーニングしたネットワークが, 高確率で指数関数的に高速に収束するオーバーパラメトリゼーション境界を提供する。
この研究は、過度にパラメータ化されたDIPネットワークの理論的理解への第一歩であり、より広い範囲で、逆問題設定におけるニューラルネットワークの理論的理解に関与している。
- 参考スコア(独自算出の注目度): 1.5362025549031046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have become a prominent approach to solve inverse problems in
recent years. Amongst the different existing methods, the Deep Image/Inverse
Priors (DIPs) technique is an unsupervised approach that optimizes a highly
overparametrized neural network to transform a random input into an object
whose image under the forward model matches the observation. However, the level
of overparametrization necessary for such methods remains an open problem. In
this work, we aim to investigate this question for a two-layers neural network
with a smooth activation function. We provide overparametrization bounds under
which such network trained via continuous-time gradient descent will converge
exponentially fast with high probability which allows to derive recovery
prediction bounds. This work is thus a first step towards a theoretical
understanding of overparametrized DIP networks, and more broadly it
participates to the theoretical understanding of neural networks in inverse
problem settings.
- Abstract(参考訳): 近年、ニューラルネットワークは逆問題の解決に顕著なアプローチとなっている。
異なる既存手法のうち、deep image/inverse priors(dips)テクニックは、高度にパラメータ化されたニューラルネットワークを最適化し、前方モデル下の画像が観察と一致するオブジェクトにランダムな入力を変換する非教師なしアプローチである。
しかし、そのような方法に必要なオーバーパラメータのレベルは依然として未解決の問題である。
本研究では,スムーズな活性化機能を持つ2層ニューラルネットワークについて,この問題について検討する。
本研究では, 連続時間勾配降下によりトレーニングされたネットワークが, 高確率で指数関数的に高速に収束し, 回復予測境界を導出するオーバーパラメトリゼーション・バウンダリを提供する。
この研究は、過剰パラメータのディップネットワークの理論的な理解への第一歩であり、より広く、逆問題設定におけるニューラルネットワークの理論的な理解に関与している。
関連論文リスト
- Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration [62.41329042683779]
本稿では, 回転対称性を組み込んだ高精度な回転同変近位ネットワークを提案する。
本研究は, 回転対称性の先行を深く展開する枠組みに効果的に組み込む, 高精度な回転同変近位ネットワークを提案する。
論文 参考訳(メタデータ) (2023-12-25T11:53:06Z) - Convergence and Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems [2.6695224599322214]
我々は、逆問題を解決するために訓練された教師なしフィードフォワード多層ニューラルネットワークのクラスに対して、決定論的収束と回復保証を提供する。
また、スムーズなアクティベーション関数を持つ2層ディープ逆プリエントネットワークが保証の恩恵を受けるようなオーバーパラメトリゼーション境界を導出する。
論文 参考訳(メタデータ) (2023-09-21T14:48:02Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
本稿では,生体神経ネットワークにおける信号伝達を前方方向と後方方向の両方で記述するための新しい規範的アプローチを提案する。
このフレームワークは、従来のニューラルネットワークとバックプロパゲーションアルゴリズムの生物学的評価可能性に関する多くの懸念に対処する。
提案手法は,前方信号伝搬路と後方信号伝搬路の重み対称性問題に対する自然な解法を提供する。
論文 参考訳(メタデータ) (2023-06-07T22:14:33Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Imbedding Deep Neural Networks [0.0]
ニューラルODEのような連続深度ニューラルネットワークは、非線形ベクトル値の最適制御問題の観点から、残留ニューラルネットワークの理解を再燃させた。
本稿では,ネットワークの深さを基本変数とする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T22:00:41Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
勾配流下で訓練された単層線形ネットワークの新たな解析法を提案する。
正方形損失はその最適値に指数関数的に収束することを示す。
我々は、トレーニングされたネットワークとmin-norm解の間の距離に基づいて、新しい非漸近上界を導出する。
論文 参考訳(メタデータ) (2021-05-13T15:13:51Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。