Optimized preprocessing and Tiny ML for Attention State Classification
- URL: http://arxiv.org/abs/2303.11371v1
- Date: Mon, 20 Mar 2023 18:17:35 GMT
- Title: Optimized preprocessing and Tiny ML for Attention State Classification
- Authors: Yinghao Wang, R\'emi Nahon, Enzo Tartaglione, Pavlo Mozharovskyi, and
Van-Tam Nguyen
- Abstract summary: We present a new approach to mental state classification from EEG signals by combining signal processing techniques and machine learning algorithms.
We evaluate the performance of the proposed method on a dataset of EEG recordings collected during a cognitive load task.
- Score: 2.7810511835091427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a new approach to mental state classification from
EEG signals by combining signal processing techniques and machine learning (ML)
algorithms. We evaluate the performance of the proposed method on a dataset of
EEG recordings collected during a cognitive load task and compared it to other
state-of-the-art methods. The results show that the proposed method achieves
high accuracy in classifying mental states and outperforms state-of-the-art
methods in terms of classification accuracy and computational efficiency.
Related papers
- An Efficient and Flexible Deep Learning Method for Signal Delineation via Keypoints Estimation [4.2807943283312095]
We present Keypoint Estimation for Electrocardiogram Delineation (KEED), a novel DL model designed for keypoint estimation.
KEED organically offers an output aligned with clinical expectations.
Remarkably, KEED significantly outperforms despite being optimized with an extremely limited annotated data.
arXiv Detail & Related papers (2024-07-24T08:13:10Z) - Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification [4.588028371034407]
We focus on analyzing InterpretTime, a recent evaluation methodology for attribution methods applied to MTSC.
We showcase some significant weaknesses of the original methodology and propose ideas to improve its accuracy and efficiency.
We find that perturbation-based methods such as SHAP and Feature Ablation work well across a set of datasets.
arXiv Detail & Related papers (2024-06-18T11:18:46Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Predicted Embedding Power Regression for Large-Scale Out-of-Distribution
Detection [77.1596426383046]
We develop a novel approach that calculates the probability of the predicted class label based on label distributions learned during the training process.
Our method performs better than current state-of-the-art methods with only a negligible increase in compute cost.
arXiv Detail & Related papers (2023-03-07T18:28:39Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
We propose a simple and efficient continual learning method for on-device environmental sound classification.
Our method selects the historical data for the training by measuring the per-sample classification uncertainty.
arXiv Detail & Related papers (2022-07-15T12:13:04Z) - An Adaptive Task-Related Component Analysis Method for SSVEP recognition [0.913755431537592]
Steady-state visual evoked potential (SSVEP) recognition methods are equipped with learning from the subject's calibration data.
This study develops a new method to learn from limited calibration data.
arXiv Detail & Related papers (2022-04-17T15:12:40Z) - Adaptive Template Enhancement for Improved Person Recognition using
Small Datasets [0.9668407688201358]
A novel instance-based method for the classification of electroencephalography (EEG) signals is presented and evaluated in this paper.
The proposed adaptive template enhancement mechanism transforms the feature-level instances by treating each feature dimension separately.
The proposed approach demonstrates significantly improved classification accuracy in both identification and verification scenarios.
arXiv Detail & Related papers (2022-01-03T10:14:38Z) - Hybrid Method Based on NARX models and Machine Learning for Pattern
Recognition [0.0]
This work presents a novel technique that integrates the methodologies of machine learning and system identification to solve multiclass problems.
The efficiency of the method was tested by running case studies investigated in machine learning, obtaining better absolute results when compared with classical classification algorithms.
arXiv Detail & Related papers (2021-06-08T00:17:36Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
We develop an algorithm that provides per-class explainability.
In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization.
arXiv Detail & Related papers (2020-12-03T18:48:39Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.