論文の概要: STDLens: Model Hijacking-Resilient Federated Learning for Object
Detection
- arxiv url: http://arxiv.org/abs/2303.11511v3
- Date: Sat, 20 May 2023 03:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 03:41:58.466902
- Title: STDLens: Model Hijacking-Resilient Federated Learning for Object
Detection
- Title(参考訳): stdlens: オブジェクト検出のためのモデルハイジャック・レジリエントな連合学習
- Authors: Ka-Ho Chow, Ling Liu, Wenqi Wei, Fatih Ilhan, Yanzhao Wu
- Abstract要約: Federated Learning (FL)は、ディープラーニングに基づくオブジェクト検出モデルをクライアントの分散集団でトレーニングするための協調学習フレームワークとして人気を集めている。
その利点にもかかわらず、FLはモデルハイジャックに弱い。
本稿では,このような攻撃に対してFLを保護するための原則的アプローチであるSTDLensを紹介する。
- 参考スコア(独自算出の注目度): 13.895922908738507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has been gaining popularity as a collaborative
learning framework to train deep learning-based object detection models over a
distributed population of clients. Despite its advantages, FL is vulnerable to
model hijacking. The attacker can control how the object detection system
should misbehave by implanting Trojaned gradients using only a small number of
compromised clients in the collaborative learning process. This paper
introduces STDLens, a principled approach to safeguarding FL against such
attacks. We first investigate existing mitigation mechanisms and analyze their
failures caused by the inherent errors in spatial clustering analysis on
gradients. Based on the insights, we introduce a three-tier forensic framework
to identify and expel Trojaned gradients and reclaim the performance over the
course of FL. We consider three types of adaptive attacks and demonstrate the
robustness of STDLens against advanced adversaries. Extensive experiments show
that STDLens can protect FL against different model hijacking attacks and
outperform existing methods in identifying and removing Trojaned gradients with
significantly higher precision and much lower false-positive rates.
- Abstract(参考訳): Federated Learning (FL)は、ディープラーニングに基づくオブジェクト検出モデルをクライアントの分散集団でトレーニングするための協調学習フレームワークとして人気を集めている。
その利点にもかかわらず、FLはモデルハイジャックに弱い。
攻撃者は、協調学習プロセスにおいて、少数の妥協されたクライアントのみを使用して、トロイの木馬勾配を埋め込むことで、オブジェクト検出システムがどう振る舞うべきかを制御できる。
本稿では,このような攻撃に対してFLを保護するための原則的アプローチであるSTDLensを紹介する。
まず,既存の緩和機構を調査し,勾配上の空間クラスタリング解析における固有誤差による障害の解析を行う。
この知見に基づいて, トロイの木馬の勾配を識別し, 駆除し, flにおける性能を回復するための三層法医学的枠組みを提案する。
3種類のアダプティブアタックを考慮し,STDLの高度な敵に対する堅牢性を示す。
広汎な実験により、STDLensはFLを異なるモデルハイジャック攻撃から保護し、より高精度で偽陽性率の低いトロイの木馬勾配を識別・除去する既存の方法より優れていた。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - Federated Learning with Anomaly Detection via Gradient and Reconstruction Analysis [2.28438857884398]
自動エンコーダ駆動のデータ再構成と勾配解析を相乗化して、前例のない精度で有毒データを検出・緩和する新しいフレームワークを提案する。
本手法は, 最小偽陽性率を維持しつつ, 異常検出精度を15%向上させる。
私たちの仕事は、分散学習のセキュリティにおける将来の進歩の道を開くものです。
論文 参考訳(メタデータ) (2024-03-15T03:54:45Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning [0.0]
Federated Learning(FL)は、集中型機械学習(ML)デプロイメントに関連する典型的なプライバシ問題に対する、有望なアプローチである。
そのよく知られた利点にもかかわらず、FLはビザンツの行動や毒殺攻撃のようなセキュリティ攻撃に弱い。
提案手法は各種モデル毒殺攻撃に対して試験され,最先端の凝集法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-15T16:42:04Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Identifying Backdoor Attacks in Federated Learning via Anomaly Detection [31.197488921578984]
フェデレーション学習はバックドア攻撃に弱い。
本稿では,共有モデル更新を検証し,攻撃に対する効果的な防御方法を提案する。
提案手法が最先端のバックドア攻撃を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2022-02-09T07:07:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。