Indeterminate Probability Theory
- URL: http://arxiv.org/abs/2303.11536v2
- Date: Mon, 23 Jun 2025 10:56:46 GMT
- Title: Indeterminate Probability Theory
- Authors: Tao Yang, Chuang Liu, Xiaofeng Ma, Weijia Lu, Ning Wu, Bingyang Li, Zhifei Yang, Peng Liu, Lin Sun, Xiaodong Zhang, Can Zhang,
- Abstract summary: This paper proposes Indeterminate Probability Theory (IPT)<n>IPT is an observer-centered framework in which experimental outcomes are represented as distributions combining ground truth with observation error.<n>IPT is consistent with classical probability theory and subsumes the frequentist equation in the limit of vanishing observation error.
- Score: 18.320645632562663
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Complex continuous or mixed joint distributions (e.g., P(Y | z_1, z_2, ..., z_N)) generally lack closed-form solutions, often necessitating approximations such as MCMC. This paper proposes Indeterminate Probability Theory (IPT), which makes the following contributions: (1) An observer-centered framework in which experimental outcomes are represented as distributions combining ground truth with observation error; (2) The introduction of three independence candidate axioms that enable a two-phase probabilistic inference framework; (3) The derivation of closed-form solutions for arbitrary complex joint distributions under this framework. Both the Indeterminate Probability Neural Network (IPNN) model and the non-neural multivariate time series forecasting application demonstrate IPT's effectiveness in modeling high-dimensional distributions, with successful validation up to 1000 dimensions. Importantly, IPT is consistent with classical probability theory and subsumes the frequentist equation in the limit of vanishing observation error.
Related papers
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
We propose a quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM)<n>It enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces.<n>This paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
arXiv Detail & Related papers (2025-05-08T11:48:21Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.<n>We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.<n>Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Ergodic repeated interaction quantum systems: Steady states and reducibility theory [0.0]
We consider the time evolution of an open quantum system subject to a sequence of random quantum channels with a stationary distribution.
Various specific models of disorder in repeated interaction models have been considered.
We develop a reducarity theory for general stationary random repeated interaction models without this condition.
arXiv Detail & Related papers (2024-06-16T15:38:20Z) - Convergence of Continuous Normalizing Flows for Learning Probability Distributions [10.381321024264484]
Continuous normalizing flows (CNFs) are a generative method for learning probability distributions.
We study the theoretical properties of CNFs with linear regularity in learning probability distributions from a finite random sample.
We present a convergence analysis framework that encompasses the error due to velocity estimation, the discretization error, and the early stopping error.
arXiv Detail & Related papers (2024-03-31T03:39:04Z) - Utility-Probability Duality of Neural Networks [4.871730595406078]
We propose an alternative utility-based explanation to the standard supervised learning procedure in deep learning.
The basic idea is to interpret the learned neural network not as a probability model but as an ordinal utility function.
We show that for all neural networks with softmax outputs, the SGD learning dynamic of maximum likelihood estimation can be seen as an iteration process.
arXiv Detail & Related papers (2023-05-24T08:09:07Z) - Probabilistic Modeling: Proving the Lottery Ticket Hypothesis in Spiking
Neural Network [30.924449325020767]
Lottery Ticket Hypothesis (LTH) states that a randomly-d large neural network contains a small sub-network.
LTH opens up a new path for pruning network.
arXiv Detail & Related papers (2023-05-20T09:27:34Z) - Continuous Indeterminate Probability Neural Network [4.198538504785438]
This paper introduces a general model called CIPNN - Continuous Indeterminate Probability Neural Network.
CIPNN is based on IPNN, which is used for discrete latent random variables.
We propose a new method to visualize the latent random variables, we use one of N dimensional latent variables as a decoder.
arXiv Detail & Related papers (2023-03-23T00:11:17Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Statistical Properties of the Entropy from Ordinal Patterns [55.551675080361335]
Knowing the joint distribution of the pair Entropy-Statistical Complexity for a large class of time series models would allow statistical tests that are unavailable to date.
We characterize the distribution of the empirical Shannon's Entropy for any model under which the true normalized Entropy is neither zero nor one.
We present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's Entropy.
arXiv Detail & Related papers (2022-09-15T23:55:58Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Out of Distribution Detection, Generalization, and Robustness Triangle
with Maximum Probability Theorem [2.0654955576087084]
MPT uses the probability distribution that the models assume on random variables to provide an upper bound on probability of the model.
We apply MPT to challenging out-of-distribution (OOD) detection problems in computer vision by incorporating MPT as a regularization scheme in training of CNNs and their energy based variants.
arXiv Detail & Related papers (2022-03-23T02:42:08Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - On some theoretical limitations of Generative Adversarial Networks [77.34726150561087]
It is a general assumption that GANs can generate any probability distribution.
We provide a new result based on Extreme Value Theory showing that GANs can't generate heavy tailed distributions.
arXiv Detail & Related papers (2021-10-21T06:10:38Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - PSD Representations for Effective Probability Models [117.35298398434628]
We show that a recently proposed class of positive semi-definite (PSD) models for non-negative functions is particularly suited to this end.
We characterize both approximation and generalization capabilities of PSD models, showing that they enjoy strong theoretical guarantees.
Our results open the way to applications of PSD models to density estimation, decision theory and inference.
arXiv Detail & Related papers (2021-06-30T15:13:39Z) - Probabilistic Deep Learning with Probabilistic Neural Networks and Deep
Probabilistic Models [0.6091702876917281]
We distinguish two approaches to probabilistic deep learning: probabilistic neural networks and deep probabilistic models.
Probabilistic deep learning is deep learning that accounts for uncertainty, both model uncertainty and data uncertainty.
arXiv Detail & Related papers (2021-05-31T22:13:21Z) - Perceptron Theory Can Predict the Accuracy of Neural Networks [6.136302173351179]
Multilayer neural networks set the current state of the art for many technical classification problems.
But, these networks are still, essentially, black boxes in terms of analyzing them and predicting their performance.
Here, we develop a statistical theory for the one-layer perceptron and show that it can predict performances of a surprisingly large variety of neural networks.
arXiv Detail & Related papers (2020-12-14T19:02:26Z) - An exactly solvable ansatz for statistical mechanics models [0.0]
We propose a family of "exactly solvable" probability distributions to approximate partition functions of two-dimensional statistical mechanics models.
The distributions lie strictly outside the mean-field framework, but their free energies can be computed in a time that scales linearly with the system size.
arXiv Detail & Related papers (2020-10-14T22:30:22Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
An empirical model is said contextual if its distributions cannot be obtained marginalizing a joint distribution over X.
We present a different and classical source of contextual empirical models: the interaction among many processes.
The statistical behavior of the network in the long run makes the empirical model generically contextual and even strongly contextual.
arXiv Detail & Related papers (2020-06-22T16:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.