Convergence of Continuous Normalizing Flows for Learning Probability Distributions
- URL: http://arxiv.org/abs/2404.00551v1
- Date: Sun, 31 Mar 2024 03:39:04 GMT
- Title: Convergence of Continuous Normalizing Flows for Learning Probability Distributions
- Authors: Yuan Gao, Jian Huang, Yuling Jiao, Shurong Zheng,
- Abstract summary: Continuous normalizing flows (CNFs) are a generative method for learning probability distributions.
We study the theoretical properties of CNFs with linear regularity in learning probability distributions from a finite random sample.
We present a convergence analysis framework that encompasses the error due to velocity estimation, the discretization error, and the early stopping error.
- Score: 10.381321024264484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous normalizing flows (CNFs) are a generative method for learning probability distributions, which is based on ordinary differential equations. This method has shown remarkable empirical success across various applications, including large-scale image synthesis, protein structure prediction, and molecule generation. In this work, we study the theoretical properties of CNFs with linear interpolation in learning probability distributions from a finite random sample, using a flow matching objective function. We establish non-asymptotic error bounds for the distribution estimator based on CNFs, in terms of the Wasserstein-2 distance. The key assumption in our analysis is that the target distribution satisfies one of the following three conditions: it either has a bounded support, is strongly log-concave, or is a finite or infinite mixture of Gaussian distributions. We present a convergence analysis framework that encompasses the error due to velocity estimation, the discretization error, and the early stopping error. A key step in our analysis involves establishing the regularity properties of the velocity field and its estimator for CNFs constructed with linear interpolation. This necessitates the development of uniform error bounds with Lipschitz regularity control of deep ReLU networks that approximate the Lipschitz function class, which could be of independent interest. Our nonparametric convergence analysis offers theoretical guarantees for using CNFs to learn probability distributions from a finite random sample.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Matching Normalizing Flows and Probability Paths on Manifolds [57.95251557443005]
Continuous Normalizing Flows (CNFs) are generative models that transform a prior distribution to a model distribution by solving an ordinary differential equation (ODE)
We propose to train CNFs by minimizing probability path divergence (PPD), a novel family of divergences between the probability density path generated by the CNF and a target probability density path.
We show that CNFs learned by minimizing PPD achieve state-of-the-art results in likelihoods and sample quality on existing low-dimensional manifold benchmarks.
arXiv Detail & Related papers (2022-07-11T08:50:19Z) - Predicting conditional probability distributions of redshifts of Active
Galactic Nuclei using Hierarchical Correlation Reconstruction [0.8702432681310399]
This article applies Hierarchical Correlation Reconstruction (HCR) approach to inexpensively predict conditional probability distributions.
We get interpretable models: with coefficients describing contributions of features to conditional moments.
This article extends on the original approach especially by using Canonical Correlation Analysis (CCA) for feature optimization and l1 "lasso" regularization.
arXiv Detail & Related papers (2022-06-13T14:28:53Z) - Learning Distributions by Generative Adversarial Networks: Approximation
and Generalization [0.6768558752130311]
We study how well generative adversarial networks learn from finite samples by analyzing the convergence rates of these models.
Our analysis is based on a new inequality oracle that decomposes the estimation error of GAN into the discriminator and generator approximation errors.
For generator approximation error, we show that neural network can approximately transform a low-dimensional source distribution to a high-dimensional target distribution.
arXiv Detail & Related papers (2022-05-25T09:26:17Z) - GANs as Gradient Flows that Converge [3.8707695363745223]
We show that along the gradient flow induced by a distribution-dependent ordinary differential equation, the unknown data distribution emerges as the long-time limit.
The simulation of the ODE is shown equivalent to the training of generative networks (GANs)
This equivalence provides a new "cooperative" view of GANs and, more importantly, sheds new light on the divergence of GANs.
arXiv Detail & Related papers (2022-05-05T20:29:13Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Off-Policy Fitted Q-Evaluation with Differentiable Function
Approximators: Z-Estimation and Inference Theory [34.307187875861516]
Off-Policy Evaluation serves as one of the cornerstones in Reinforcement Learning (RL)
We focus on FQE with general differentiable function approximators, making our theory applicable to neural function approximations.
The finite-sample FQE error bound is dominated by the same variance term, and it can also be bounded by function class-dependent divergence.
arXiv Detail & Related papers (2022-02-10T11:59:54Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.