論文の概要: An Embarrassingly Simple Approach for Wafer Feature Extraction and
Defect Pattern Recognition
- arxiv url: http://arxiv.org/abs/2303.11632v1
- Date: Tue, 21 Mar 2023 07:00:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 16:10:23.785225
- Title: An Embarrassingly Simple Approach for Wafer Feature Extraction and
Defect Pattern Recognition
- Title(参考訳): ウェハ特徴抽出と欠陥パターン認識のための恥ずかしい簡単なアプローチ
- Authors: Nitish Shukla
- Abstract要約: 本稿では,ウェハ画像から特徴を抽出する手法を提案する。
提案手法は極めて高速で直感的であり,説明可能でありながら非パラメトリックである。
我々の特徴抽出は、解釈可能性分析によって明らかになったデータポイントの相対的な形状と位置を保ちながら、トレーニングや微調整を必要としない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying defect patterns in a wafer map during manufacturing is crucial to
find the root cause of the underlying issue and provides valuable insights on
improving yield in the foundry. Currently used methods use deep neural networks
to identify the defects. These methods are generally very huge and have
significant inference time. They also require GPU support to efficiently
operate. All these issues make these models not fit for on-line prediction in
the manufacturing foundry. In this paper, we propose an extremely simple yet
effective technique to extract features from wafer images. The proposed method
is extremely fast, intuitive, and non-parametric while being explainable. The
experiment results show that the proposed pipeline outperforms conventional
deep learning models. Our feature extraction requires no training or
fine-tuning while preserving the relative shape and location of data points as
revealed by our interpretability analysis.
- Abstract(参考訳): 製造中のウェハマップにおける欠陥パターンの同定は、根本原因を見つけるために重要であり、鋳造所の収量改善に関する貴重な洞察を提供する。
現在使用されている方法は、ディープニューラルネットワークを使用して欠陥を識別する。
これらの手法は一般に非常に巨大であり、推論時間もかなり長い。
効率的な運用にはGPUのサポートも必要だ。
これらの問題は、これらのモデルを製造ファウンデーションにおけるオンライン予測には適さない。
本稿では,ウェーハ画像から特徴を抽出するための極めて単純かつ効果的な手法を提案する。
提案手法は極めて高速で直感的であり,説明可能でありながら非パラメトリックである。
実験の結果,提案したパイプラインは従来のディープラーニングモデルよりも優れていた。
特徴抽出は,データポイントの相対的な形状と位置を維持しながら,学習や微調整を必要としない。
関連論文リスト
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - A Deep Active Contour Model for Delineating Glacier Calving Fronts [17.061463565692456]
近年の研究では、エッジ検出とセグメンテーションを組み合わせることで、前部検出器の加工精度が向上することが示されている。
中間段階として高密度な予測を組み込まない明示的輪郭検出モデルを提案する。
提案手法はCOBRA(Charting Outlines by Recurrent Adaptation')と呼ばれ、特徴抽出のための畳み込みニューラルネットワーク(CNN)と、デラインのためのアクティブな輪郭モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2023-07-07T08:45:46Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - A novel approach for wafer defect pattern classification based on
topological data analysis [0.0]
半導体製造において、ウェハマップ欠陥パターンは設備維持と収量管理に重要な情報を提供する。
本稿では,欠陥パターンの形状を有限次元ベクトルとして表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-19T11:54:13Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
限られたリソースを持つエッジデバイスにこれらのモデルをデプロイするには、畳み込みニューラルネットワーク(CNN)圧縮が不可欠である。
本稿では,新しい視点からチャネルプルーニング問題に対処するために,モデルの解釈を活用して,プルーニング過程を解析する手法を提案する。
本研究では,実時間スムーズなスムーズなスムーズなスムーズなマスク予測を行うセレクタモデルを導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-09-07T01:12:11Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3次元物体検出は、運転支援システムなどの様々な実用用途で必要とされる重要な機能である。
双眼視やLiDARに頼っている従来の設定に比べて、経済的な解決策として単眼3D検出が注目されているが、それでも満足のいく結果が得られていない。
本稿ではまず,この問題に関する系統的研究を行い,現在の単分子3次元検出問題をインスタンス深度推定問題として単純化できることを考察する。
論文 参考訳(メタデータ) (2021-07-29T16:30:33Z) - Deep learning: a statistical viewpoint [120.94133818355645]
ディープラーニングは、理論的観点からいくつかの大きな驚きを明らかにしました。
特に、簡単な勾配法は、最適でないトレーニング問題に対するほぼ完全な解決策を簡単に見つけます。
我々はこれらの現象を具体的原理で補うと推測する。
論文 参考訳(メタデータ) (2021-03-16T16:26:36Z) - Provable Benefits of Overparameterization in Model Compression: From
Double Descent to Pruning Neural Networks [38.153825455980645]
最近の実証的な証拠は、オーバライゼーションの実践が大きなモデルのトレーニングに利益をもたらすだけでなく、軽量モデルの構築を支援することも示している。
本稿では,モデル刈り込みの高次元ツールセットを理論的に特徴付けることにより,これらの経験的発見に光を当てる。
もっとも情報に富む特徴の位置が分かっていても、我々は大きなモデルに適合し、刈り取るのがよい体制を解析的に特定する。
論文 参考訳(メタデータ) (2020-12-16T05:13:30Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。