論文の概要: BoPR: Body-aware Part Regressor for Human Shape and Pose Estimation
- arxiv url: http://arxiv.org/abs/2303.11675v2
- Date: Fri, 24 Mar 2023 08:41:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 17:16:28.754271
- Title: BoPR: Body-aware Part Regressor for Human Shape and Pose Estimation
- Title(参考訳): bopr:人体形状とポーズ推定のための身体認識部レグレッサ
- Authors: Yongkang Cheng, Shaoli Huang, Jifeng Ning, Ying Shan
- Abstract要約: 提案手法であるBoPR(Body-Aware Part Regressor)は,まず注意誘導機構を用いて身体と部分の両方の特徴を抽出する。
次に、これらの機能を使用して、部分単位のレグレッションに余分な部分ボディ依存性をエンコードします。
- 参考スコア(独自算出の注目度): 16.38936587088618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach for estimating human body shape and pose
from monocular images that effectively addresses the challenges of occlusions
and depth ambiguity. Our proposed method BoPR, the Body-aware Part Regressor,
first extracts features of both the body and part regions using an
attention-guided mechanism. We then utilize these features to encode extra
part-body dependency for per-part regression, with part features as queries and
body feature as a reference. This allows our network to infer the spatial
relationship of occluded parts with the body by leveraging visible parts and
body reference information. Our method outperforms existing state-of-the-art
methods on two benchmark datasets, and our experiments show that it
significantly surpasses existing methods in terms of depth ambiguity and
occlusion handling. These results provide strong evidence of the effectiveness
of our approach.The code and data are available for research purposes at
https://github.com/cyk990422/BoPR.
- Abstract(参考訳): 本稿では,人体形状を推定し,眼球運動と深度あいまいさの課題に効果的に対処する単眼画像からポーズする新しいアプローチを提案する。
提案手法であるBoPR(Body-Aware Part Regressor)は,まず注意誘導機構を用いて身体と部分の両方の特徴を抽出する。
次に,クエリとして部分的特徴,参照として身体的特徴を含む部分的レグレッションに対する余分な部分的依存をエンコードするために,これらの機能を利用する。
これにより,目に見える部分や身体参照情報を利用することで,身体とオクルードされた部分の空間的関係を推定できる。
提案手法は2つのベンチマークデータセット上で既存の最先端手法よりも優れており,提案手法は深度あいまいさや閉塞処理の点で既存手法をはるかに上回っていることを示す。
コードとデータは、https://github.com/cyk990422/BoPR.comで研究目的で公開されている。
関連論文リスト
- PAFormer: Part Aware Transformer for Person Re-identification [3.8004980982852214]
ポーズ推定に基づくReIDモデルである textbf Part Aware Transformer (PAFormer) を導入する。
提案手法は,有名なReIDベンチマークデータセットにおける既存手法よりも優れている。
論文 参考訳(メタデータ) (2024-08-12T04:46:55Z) - Divide and Fuse: Body Part Mesh Recovery from Partially Visible Human Images [57.479339658504685]
ディバイドとフューズ」戦略は、人体部分を融合する前に独立して再構築する。
Human Part Parametric Models (HPPM) は、いくつかの形状とグローバルな位置パラメータからメッシュを独立に再構築する。
特別に設計された融合モジュールは、一部しか見えない場合でも、再建された部品をシームレスに統合する。
論文 参考訳(メタデータ) (2024-07-12T21:29:11Z) - 3D WholeBody Pose Estimation based on Semantic Graph Attention Network and Distance Information [2.457872341625575]
新たなセマンティックグラフアテンションネットワークは、グローバルコンテキストをキャプチャする自己アテンションの能力の恩恵を受けることができる。
本体部分デコーダは、身体の特定のセグメントに関連する情報を抽出し、精製するのを支援する。
幾何学的損失(Geometry Loss)は身体の構造的骨格に批判的な制約を与え、モデルの予測が人間の姿勢の自然な限界に合致することを確実にする。
論文 参考訳(メタデータ) (2024-06-03T10:59:00Z) - AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation [55.179287851188036]
人間のポーズと形状の復元のための新しいオールインワンステージフレームワークであるAiOSを、追加の人間検出ステップなしで導入する。
まず、画像中の人間の位置を探索し、各インスタンスのグローバルな機能をエンコードするために、人間のトークンを使用します。
そして、画像中の人間の関節を探索し、きめ細かい局所的特徴を符号化するジョイント関連トークンを導入する。
論文 参考訳(メタデータ) (2024-03-26T17:59:23Z) - Reconstructing 3D Human Pose from RGB-D Data with Occlusions [11.677978425905096]
本稿では,RGB-D画像から3次元人体をオクルージョンで再構成する手法を提案する。
そこで本研究では,シーン情報と事前知識に基づいて,意味的かつ物理的に妥当な人体を再構築し,解決空間を縮小することを提案する。
提案手法は, ProXデータセットを用いて実験を行い, 提案手法が他の手法と比較して精度が高く, 妥当な結果が得られることを示した。
論文 参考訳(メタデータ) (2023-10-02T14:16:13Z) - Body Part-Based Representation Learning for Occluded Person
Re-Identification [102.27216744301356]
隠蔽人物再識別(ReID)とは,隠蔽人物画像と包括的人物画像とのマッチングを目的とした人物検索タスクである。
パートベースの手法は、微細な情報を提供し、部分的に見える人間の体を表現するのに適しているため、有益であることが示されている。
本稿では,BPBreIDという身体部分に基づくReIDモデルを提案する。
論文 参考訳(メタデータ) (2022-11-07T16:48:41Z) - KTN: Knowledge Transfer Network for Learning Multi-person 2D-3D
Correspondences [77.56222946832237]
画像中の複数の人物の密着度を検出するための新しい枠組みを提案する。
提案手法は知識伝達ネットワーク(KTN)の2つの問題に対処する。
特徴解像度を同時に維持し、背景画素を抑圧し、この戦略は精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-06-21T03:11:37Z) - PARE: Part Attention Regressor for 3D Human Body Estimation [80.20146689494992]
Part Attention Regressorはボディパートガイドによる注意マスクの予測を学ぶ。
コードはhttps://pare.is.tue.mpg.de/で研究目的に利用できる。
論文 参考訳(メタデータ) (2021-04-17T12:42:56Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。