Lipschitz-bounded 1D convolutional neural networks using the Cayley
transform and the controllability Gramian
- URL: http://arxiv.org/abs/2303.11835v2
- Date: Thu, 25 Jan 2024 09:35:25 GMT
- Title: Lipschitz-bounded 1D convolutional neural networks using the Cayley
transform and the controllability Gramian
- Authors: Patricia Pauli, Ruigang Wang, Ian R. Manchester, Frank Allg\"ower
- Abstract summary: We establish a layer-wise parameterization for 1D convolutional neural networks (CNNs) with built-in end-to-end guarantees.
In doing so, we use the Lipschitz constant of the input-output mapping characterized by a CNN as a robustness measure.
We train Lipschitz-bounded 1D CNNs for the classification of heart arrythmia data and show their improved robustness.
- Score: 1.1060425537315086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish a layer-wise parameterization for 1D convolutional neural
networks (CNNs) with built-in end-to-end robustness guarantees. In doing so, we
use the Lipschitz constant of the input-output mapping characterized by a CNN
as a robustness measure. We base our parameterization on the Cayley transform
that parameterizes orthogonal matrices and the controllability Gramian of the
state space representation of the convolutional layers. The proposed
parameterization by design fulfills linear matrix inequalities that are
sufficient for Lipschitz continuity of the CNN, which further enables
unconstrained training of Lipschitz-bounded 1D CNNs. Finally, we train
Lipschitz-bounded 1D CNNs for the classification of heart arrythmia data and
show their improved robustness.
Related papers
- LipKernel: Lipschitz-Bounded Convolutional Neural Networks via Dissipative Layers [0.0468732641979009]
We propose a layer-wise parameterization for convolutional neural networks (CNNs) that includes built-in robustness guarantees.
Our method Lip Kernel directly parameterizes dissipative convolution kernels using a 2-D Roesser-type state space model.
We show that the run-time using our method is orders of magnitude faster than state-of-the-art Lipschitz-bounded networks.
arXiv Detail & Related papers (2024-10-29T17:20:14Z) - Parseval Convolution Operators and Neural Networks [16.78532039510369]
We first identify the Parseval convolution operators as the class of energy-preserving filterbanks.
We then present a constructive approach for the design/specification of such filterbanks via the chaining of elementary Parseval modules.
We demonstrate the usage of those tools with the design of a CNN-based algorithm for the iterative reconstruction of biomedical images.
arXiv Detail & Related papers (2024-08-19T13:31:16Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
We introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory.
We show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability.
It proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches.
arXiv Detail & Related papers (2023-05-25T15:32:21Z) - Lipschitz constant estimation for 1D convolutional neural networks [0.0]
We propose a dissipativity-based method for Lipschitz constant estimation of 1D convolutional neural networks (CNNs)
In particular, we analyze the dissipativity properties of convolutional, pooling, and fully connected layers.
arXiv Detail & Related papers (2022-11-28T12:09:06Z) - Lipschitz Continuity Retained Binary Neural Network [52.17734681659175]
We introduce the Lipschitz continuity as the rigorous criteria to define the model robustness for BNN.
We then propose to retain the Lipschitz continuity as a regularization term to improve the model robustness.
Our experiments prove that our BNN-specific regularization method can effectively strengthen the robustness of BNN.
arXiv Detail & Related papers (2022-07-13T22:55:04Z) - Learning Smooth Neural Functions via Lipschitz Regularization [92.42667575719048]
We introduce a novel regularization designed to encourage smooth latent spaces in neural fields.
Compared with prior Lipschitz regularized networks, ours is computationally fast and can be implemented in four lines of code.
arXiv Detail & Related papers (2022-02-16T21:24:54Z) - Skew Orthogonal Convolutions [44.053067014796596]
Training convolutional neural networks with a Lipschitz constraint under the $l_2$ norm is useful for provable adversarial robustness, interpretable gradients, stable training, etc.
Methodabv allows us to train provably Lipschitz, large convolutional neural networks significantly faster than prior works.
arXiv Detail & Related papers (2021-05-24T17:11:44Z) - Orthogonalizing Convolutional Layers with the Cayley Transform [83.73855414030646]
We propose and evaluate an alternative approach to parameterize convolutional layers that are constrained to be orthogonal.
We show that our method indeed preserves orthogonality to a high degree even for large convolutions.
arXiv Detail & Related papers (2021-04-14T23:54:55Z) - Certifying Incremental Quadratic Constraints for Neural Networks via
Convex Optimization [2.388501293246858]
We propose a convex program to certify incremental quadratic constraints on the map of neural networks over a region of interest.
certificates can capture several useful properties such as (local) Lipschitz continuity, one-sided Lipschitz continuity, invertibility, and contraction.
arXiv Detail & Related papers (2020-12-10T21:15:00Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1.
This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI)
We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction.
We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (
arXiv Detail & Related papers (2020-04-02T10:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.