論文の概要: Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation
- arxiv url: http://arxiv.org/abs/2303.11851v2
- Date: Tue, 29 Aug 2023 07:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 18:48:59.751143
- Title: Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation
- Title(参考訳): sample4geo:クロスビュージオローカライズのためのハードネガティブサンプリング
- Authors: Fabian Deuser, Konrad Habel, Norbert Oswald
- Abstract要約: 対称なInfoNCE損失を伴うコントラスト学習に基づく,シンプルだが効果的なアーキテクチャを提案する。
私たちのフレームワークは、アグリゲーションモジュールの使用を不要にする、狭いトレーニングパイプラインで構成されています。
本研究は,CVUSA,CVACT,University-1652,VIGORなどの一般的なクロスビューデータセットに対して,優れた性能を示す。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-View Geo-Localisation is still a challenging task where additional
modules, specific pre-processing or zooming strategies are necessary to
determine accurate positions of images. Since different views have different
geometries, pre-processing like polar transformation helps to merge them.
However, this results in distorted images which then have to be rectified.
Adding hard negatives to the training batch could improve the overall
performance but with the default loss functions in geo-localisation it is
difficult to include them. In this article, we present a simplified but
effective architecture based on contrastive learning with symmetric InfoNCE
loss that outperforms current state-of-the-art results. Our framework consists
of a narrow training pipeline that eliminates the need of using aggregation
modules, avoids further pre-processing steps and even increases the
generalisation capability of the model to unknown regions. We introduce two
types of sampling strategies for hard negatives. The first explicitly exploits
geographically neighboring locations to provide a good starting point. The
second leverages the visual similarity between the image embeddings in order to
mine hard negative samples. Our work shows excellent performance on common
cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR. A comparison
between cross-area and same-area settings demonstrate the good generalisation
capability of our model.
- Abstract(参考訳): 画像の位置を正確に決定するためには、追加のモジュール、特定の前処理やズーム戦略が必要になる。
異なるビューは異なるジオメトリを持つので、極性変換のような前処理はそれらをマージするのに役立ちます。
しかし、この結果、歪んだ画像が修正されなければならない。
トレーニングバッチにハードネガティブを追加することで、全体的なパフォーマンスが向上する可能性があるが、ジオローカライゼーションにおけるデフォルトの損失関数では、それらを含めることは困難である。
本稿では,現在の結果に勝る対称情報損失を伴うコントラスト学習に基づく簡易かつ効果的なアーキテクチャを提案する。
我々のフレームワークは、アグリゲーションモジュールの使用の必要性を排除し、さらに事前処理のステップを回避し、未知の領域へのモデルの一般化能力を高める、狭いトレーニングパイプラインで構成されています。
強陰性に対する2種類のサンプリング戦略を導入する。
1つ目は地理的に隣接する場所を明示的に利用し、良い出発点を提供する。
2つ目は、イメージ埋め込み間の視覚的類似性を利用して、強い負のサンプルをマイニングする。
本研究は,CVUSA,CVACT,University-1652,VIGORなどの一般的なクロスビューデータセットにおいて優れた性能を示す。
クロスエリア設定と同領域設定を比較することで,モデルの優れた一般化能力を示す。
関連論文リスト
- GeoDTR+: Toward generic cross-view geolocalization via geometric disentanglement [20.346145927174373]
Cross-View Geo-Localization (CVGL) は、データベース内のジオタグ付き空中画像とマッチングすることで、地上画像の位置を推定する。
既存の手法は、トレーニングデータとテストデータが完全に異なる領域から取得されるクロスエリア評価において、依然としてパフォーマンスの低下に悩まされている。
視覚的特徴の幾何学的レイアウトを抽出する能力の欠如と,低レベルの細部への過度な適合が原因と考えられる。
本研究では,視覚的特徴間の相関をモデル化する拡張GLEモジュールを用いたGeoDTR+を提案する。
論文 参考訳(メタデータ) (2023-08-18T15:32:01Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Simple, Effective and General: A New Backbone for Cross-view Image
Geo-localization [9.687328460113832]
我々は、シンプルな注意に基づく画像ジオローカライゼーションネットワーク(SAIG)という新しいバックボーンネットワークを提案する。
提案したSAIGは、パッチ間の長距離相互作用と、マルチヘッド・セルフアテンション・レイヤとのクロスビュー対応を効果的に表現する。
我々のSAIGは、従来よりもはるかにシンプルでありながら、クロスビューなジオローカライゼーションにおける最先端の成果を達成している。
論文 参考訳(メタデータ) (2023-02-03T06:50:51Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
クロスビュージオローカライゼーションは、参照ジオタグ付き空中画像データベースとマッチングすることで、クエリーグラウンド画像の位置を推定することを目的としている。
最近の研究は、クロスビューなジオローカライゼーションベンチマークにおいて顕著な進歩を遂げている。
しかし、既存の手法は依然としてクロスエリアベンチマークのパフォーマンスの低下に悩まされている。
論文 参考訳(メタデータ) (2022-12-08T04:54:01Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
本稿では,効果的な画像操作検出のためのコントラスト学習(PCL)を提案する。
我々のPCLは、RGBとノイズビューから2種類のグローバル特徴を抽出し、2ストリームアーキテクチャで構成されている。
我々のPCLは、実際にラベル付けされていないデータに容易に適用でき、手作業によるラベル付けコストを削減し、より一般化可能な機能を促進することができる。
論文 参考訳(メタデータ) (2022-10-16T13:30:13Z) - Viewpoint Invariant Dense Matching for Visual Geolocalization [15.8038460597256]
本研究では,局所的特徴量に基づく画像マッチング手法を提案する。
我々の手法はGeoWarpと呼ばれ、高密度な特徴を抽出する過程において、視点シフトへの不変性を直接埋め込む。
GeoWarpは、既存の視覚的ジオローカライゼーションパイプラインに簡単に組み込むことができる、リグレードメソッドとして効率的に実装されている。
論文 参考訳(メタデータ) (2021-09-20T20:17:38Z) - Leveraging EfficientNet and Contrastive Learning for Accurate
Global-scale Location Estimation [15.633461635276337]
地球規模の画像ジオロケーションのための混合分類検索方式を提案する。
このアプローチは、4つの公開データセットで非常に競争力のあるパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-05-17T07:18:43Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Region Similarity Representation Learning [94.88055458257081]
Region similarity Representation Learning(ReSim)は、ローカリゼーションベースのタスクに対する自己監視型表現学習の新しいアプローチである。
ReSimはローカリゼーションのための地域表現とセマンティックイメージレベルの表現の両方を学びます。
競合するMoCo-v2ベースラインと比較して、ReSimがローカリゼーションと分類性能を大幅に向上させる表現をどのように学習するかを示します。
論文 参考訳(メタデータ) (2021-03-24T00:42:37Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。