Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation
- URL: http://arxiv.org/abs/2303.12123v2
- Date: Sun, 3 Sep 2023 06:50:55 GMT
- Title: Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation
- Authors: Weinan Song, Haoxin Zheng, Dezhan Tu, Chengwen Liang, Lei He
- Abstract summary: Oral-3Dv2 is a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
Our model learns to represent the 3D oral structure in an implicit way by mapping 2D coordinates into density values of voxels in the 3D space.
To the best of our knowledge, this is the first work of a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
- Score: 3.8215162658168524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D reconstruction of medical imaging from 2D images has become an
increasingly interesting topic with the development of deep learning models in
recent years. Previous studies in 3D reconstruction from limited X-ray images
mainly rely on learning from paired 2D and 3D images, where the reconstruction
quality relies on the scale and variation of collected data. This has brought
significant challenges in the collection of training data, as only a tiny
fraction of patients take two types of radiation examinations in the same
period. Although simulation from higher-dimension images could solve this
problem, the variance between real and simulated data could bring great
uncertainty at the same time. In oral reconstruction, the situation becomes
more challenging as only a single panoramic X-ray image is available, where
models need to infer the curved shape by prior individual knowledge. To
overcome these limitations, we propose Oral-3Dv2 to solve this cross-dimension
translation problem in dental healthcare by learning solely on projection
information, i.e., the projection image and trajectory of the X-ray tube. Our
model learns to represent the 3D oral structure in an implicit way by mapping
2D coordinates into density values of voxels in the 3D space. To improve
efficiency and effectiveness, we utilize a multi-head model that predicts a
bunch of voxel values in 3D space simultaneously from a 2D coordinate in the
axial plane and the dynamic sampling strategy to refine details of the density
distribution in the reconstruction result. Extensive experiments in simulated
and real data show that our model significantly outperforms existing
state-of-the-art models without learning from paired images or prior individual
knowledge. To the best of our knowledge, this is the first work of a
non-adversarial-learning-based model in 3D radiology reconstruction from a
single panoramic X-ray image.
Related papers
- E3D-GPT: Enhanced 3D Visual Foundation for Medical Vision-Language Model [23.56751925900571]
The development of 3D medical vision-language models holds significant potential for disease diagnosis and patient treatment.
We utilize self-supervised learning to construct a 3D visual foundation model for extracting 3D visual features.
We apply 3D spatial convolutions to aggregate and project high-level image features, reducing computational complexity.
Our model demonstrates superior performance compared to existing methods in report generation, visual question answering, and disease diagnosis.
arXiv Detail & Related papers (2024-10-18T06:31:40Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
We propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem.
Our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT.
arXiv Detail & Related papers (2023-03-15T08:28:06Z) - CNN-based real-time 2D-3D deformable registration from a single X-ray
projection [2.1198879079315573]
This paper presents a method for real-time 2D-3D non-rigid registration using a single fluoroscopic image.
A dataset composed of displacement fields and 2D projections of the anatomy is generated from a preoperative scan.
A neural network is trained to recover the unknown 3D displacement field from a single projection image.
arXiv Detail & Related papers (2022-12-15T09:57:19Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - Deep Learning compatible Differentiable X-ray Projections for Inverse
Rendering [8.926091372824942]
We propose a differentiable by deriving the distance travelled by a ray inside mesh structures to generate a distance map.
We show its application by solving the inverse problem, namely reconstructing 3D models from real 2D fluoroscopy images of the pelvis.
arXiv Detail & Related papers (2021-02-04T22:06:05Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
We present an end-to-end Convolutional Neural Network (CNN) approach for 3D reconstruction of knee bones directly from two bi-planar X-ray images.
arXiv Detail & Related papers (2020-04-02T08:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.