CNN-based real-time 2D-3D deformable registration from a single X-ray
projection
- URL: http://arxiv.org/abs/2212.07692v2
- Date: Mon, 27 Mar 2023 14:22:54 GMT
- Title: CNN-based real-time 2D-3D deformable registration from a single X-ray
projection
- Authors: Fran\c{c}ois Lecomte, Jean-Louis Dillenseger, St\'ephane Cotin
- Abstract summary: This paper presents a method for real-time 2D-3D non-rigid registration using a single fluoroscopic image.
A dataset composed of displacement fields and 2D projections of the anatomy is generated from a preoperative scan.
A neural network is trained to recover the unknown 3D displacement field from a single projection image.
- Score: 2.1198879079315573
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Purpose: The purpose of this paper is to present a method for real-time 2D-3D
non-rigid registration using a single fluoroscopic image. Such a method can
find applications in surgery, interventional radiology and radiotherapy. By
estimating a three-dimensional displacement field from a 2D X-ray image,
anatomical structures segmented in the preoperative scan can be projected onto
the 2D image, thus providing a mixed reality view. Methods: A dataset composed
of displacement fields and 2D projections of the anatomy is generated from the
preoperative scan. From this dataset, a neural network is trained to recover
the unknown 3D displacement field from a single projection image. Results: Our
method is validated on lung 4D CT data at different stages of the lung
deformation. The training is performed on a 3D CT using random (non
domain-specific) diffeomorphic deformations, to which perturbations mimicking
the pose uncertainty are added. The model achieves a mean TRE over a series of
landmarks ranging from 2.3 to 5.5 mm depending on the amplitude of deformation.
Conclusion: In this paper, a CNN-based method for real-time 2D-3D non-rigid
registration is presented. This method is able to cope with pose estimation
uncertainties, making it applicable to actual clinical scenarios, such as lung
surgery, where the C-arm pose is planned before the intervention.
Related papers
- Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering [5.617649111108429]
We present DiffPose, a self-supervised approach that leverages patient-specific simulation and differentiable physics-based rendering to achieve accurate 2D/3D registration without relying on manually labeled data.
DiffPose achieves sub-millimeter accuracy across surgical datasets at intraoperative speeds, improving upon existing unsupervised methods by an order of magnitude and even outperforming supervised baselines.
arXiv Detail & Related papers (2023-12-11T13:05:54Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2 is a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
Our model learns to represent the 3D oral structure in an implicit way by mapping 2D coordinates into density values of voxels in the 3D space.
To the best of our knowledge, this is the first work of a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
arXiv Detail & Related papers (2023-03-21T18:17:27Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
We propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem.
Our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT.
arXiv Detail & Related papers (2023-03-15T08:28:06Z) - IGCN: Image-to-graph Convolutional Network for 2D/3D Deformable
Registration [1.2246649738388387]
We propose an image-to-graph convolutional network that achieves deformable registration of a 3D organ mesh for a single-viewpoint 2D projection image.
We show shape prediction considering relationships among multiple organs can be used to predict respiratory motion and deformation from radiographs with clinically acceptable accuracy.
arXiv Detail & Related papers (2021-10-31T12:48:37Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - Deep Learning compatible Differentiable X-ray Projections for Inverse
Rendering [8.926091372824942]
We propose a differentiable by deriving the distance travelled by a ray inside mesh structures to generate a distance map.
We show its application by solving the inverse problem, namely reconstructing 3D models from real 2D fluoroscopy images of the pelvis.
arXiv Detail & Related papers (2021-02-04T22:06:05Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.