論文の概要: SCALES: Boost Binary Neural Network for Image Super-Resolution with Efficient Scalings
- arxiv url: http://arxiv.org/abs/2303.12270v2
- Date: Fri, 21 Feb 2025 06:11:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 23:09:17.488889
- Title: SCALES: Boost Binary Neural Network for Image Super-Resolution with Efficient Scalings
- Title(参考訳): SCALES: 効率的なスケーリングによる画像超解法のための2元ニューラルネットワーク
- Authors: Renjie Wei, Zechun Liu, Yuchen Fan, Runsheng Wang, Ru Huang, Meng Li,
- Abstract要約: 本稿では,レイヤワイズスケーリング係数と空間再スケーリング法,チャネルワイズ再スケーリング法からなるSRネットワークのバイナライズ手法を提案する。
ベースライン方式と比較してPSNRを1dB以上の精度で改善し,最初の精度の高いバイナリトランスフォーマーベースSRネットワークを実現する。
- 参考スコア(独自算出の注目度): 20.32333278283026
- License:
- Abstract: Deep neural networks for image super-resolution (SR) have demonstrated superior performance. However, the large memory and computation consumption hinders their deployment on resource-constrained devices. Binary neural networks (BNNs), which quantize the floating point weights and activations to 1-bit can significantly reduce the cost. Although BNNs for image classification have made great progress these days, existing BNNs for SR still suffer from a large performance gap between the FP SR networks. To this end, we observe the activation distribution in SR networks and find much larger pixel-to-pixel, channel-to-channel, layer-to-layer, and image-to-image variation in the activation distribution than image classification networks. However, existing BNNs for SR fail to capture these variations that contain rich information for image reconstruction, leading to inferior performance. To address this problem, we propose SCALES, a binarization method for SR networks that consists of the layer-wise scaling factor, the spatial re-scaling method, and the channel-wise re-scaling method, capturing the layer-wise, pixel-wise, and channel-wise variations efficiently in an input-dependent manner. We evaluate our method across different network architectures and datasets. For CNN-based SR networks, our binarization method SCALES outperforms the prior art method by 0.2dB with fewer parameters and operations. With SCALES, we achieve the first accurate binary Transformer-based SR network, improving PSNR by more than 1dB compared to the baseline method.
- Abstract(参考訳): 画像超解像(SR)のためのディープニューラルネットワークは優れた性能を示した。
しかし、大規模なメモリと計算消費は、リソースに制約のあるデバイスへの展開を妨げる。
浮動小数点重みと活性化を1ビットに定量化するバイナリニューラルネットワーク(BNN)は、コストを大幅に削減する。
画像分類のためのBNNは近年大きく進歩しているが、既存のSR用のBNNはFP SRネットワーク間の大きなパフォーマンスギャップに悩まされている。
そこで我々は,SRネットワークにおけるアクティベーション分布を観察し,画像分類ネットワークよりもはるかに大きなピクセル・ツー・ピクセル,チャネル・ツー・チャンネル,レイヤ・ツー・レイヤ,イメージ・ツー・イメージのバラツキを求める。
しかし、既存のSR用BNNは、画像再構成のための豊富な情報を含むこれらのバリエーションを捉えることができず、性能は劣る。
この問題に対処するために,レイヤワイドスケーリング係数と空間再スケーリング法とチャネルワイド再スケーリング法からなるSRネットワークのバイナライズ手法であるSCALESを提案する。
我々は,異なるネットワークアーキテクチャとデータセットにまたがる手法を評価する。
CNN ベースの SR ネットワークでは,2項化法 SCALES はパラメータや操作が少なく,0.2dB で先行技術よりも優れていた。
SCALESでは,最初の正確なバイナリトランスフォーマーベースSRネットワークを実現し,ベースライン法と比較してPSNRを1dB以上改善する。
関連論文リスト
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
実世界の画像超解像(RISR)は、未知の複雑な劣化下でのSR画像の品質向上に重点を置いている。
既存の手法は、分解レベルが異なる低解像度(LR)画像を強化するために重いSRモデルに依存している。
本稿では,DCS-RISRと呼ばれる高効率リアルタイム画像超解法のための動的チャネル分割方式を提案する。
論文 参考訳(メタデータ) (2022-12-15T04:34:57Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
畳み込みニューラルネットワーク(CNN)の設計の最近の進歩は、画像超解像(SR)の性能を大幅に向上させた。
残差ブロック内の一連の密接な接続を含む単位上に構築されたスケールリカレントSRアーキテクチャを提案する(Residual Dense Blocks (RDBs))。
我々のスケールリカレント設計は、現在の最先端のアプローチに比べてパラメトリックに効率的でありながら、より高いスケール要因の競合性能を提供する。
論文 参考訳(メタデータ) (2022-01-28T09:18:43Z) - Improving Super-Resolution Performance using Meta-Attention Layers [17.870338228921327]
畳み込みニューラルネットワーク(CNN)は多くの超解像(SR)と画像復元タスクで素晴らしい結果を得た。
SRのIll-posed性質は、複数の異なる劣化を経た画像を正確に超解き出すのを難しくする。
メタアテンション(メタアテンション)は、任意のSR CNNが関連する劣化パラメータで利用可能な情報を活用できるようにするメカニズムである。
論文 参考訳(メタデータ) (2021-10-27T09:20:21Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
本稿では、前向きのアクティベーションと後向きの勾配の情報を保持するために、新しいDIR-Net(Distribution-sensitive Information Retention Network)を提案する。
我々のDIR-Netは、主流かつコンパクトなアーキテクチャの下で、SOTAバイナライゼーションアプローチよりも一貫して優れています。
我々は、実世界のリソース制限されたデバイス上でDIR-Netを行い、ストレージの11.1倍の節約と5.4倍のスピードアップを実現した。
論文 参考訳(メタデータ) (2021-09-25T10:59:39Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
強い表現力を持つ深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像(SISR)において印象的な性能を達成した
情報抽出・拡張ブロック(IEEB)、再構築ブロック(RB)、情報精製ブロック(IRB)の3つの連続したサブブロックを持つ軽量拡張SR CNN(LESRCNN)を提案する。
IEEBは階層的低分解能(LR)特徴を抽出し、SISRの深い層上の浅い層の記憶能力を高めるために、得られた特徴を段階的に集約する。
RBはグローバルに拡散することで低周波特徴を高周波特徴に変換する
論文 参考訳(メタデータ) (2020-07-08T18:03:40Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。