論文の概要: Artificial Intelligence and Dual Contract
- arxiv url: http://arxiv.org/abs/2303.12350v2
- Date: Thu, 13 Jun 2024 11:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-15 02:38:50.647068
- Title: Artificial Intelligence and Dual Contract
- Title(参考訳): 人工知能とデュアルコントラクト
- Authors: Qian Qi,
- Abstract要約: 独立したQ-ラーニングアルゴリズムを備えた2つのプリンシパルが1つのエージェントと対話するモデルを開発する。
その結果、AIプリンシパルの戦略的行動は、利益の整合性に決定的に左右されることがわかった。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the capacity of artificial intelligence (AI) algorithms to autonomously design incentive-compatible contracts in dual-principal-agent settings, a relatively unexplored aspect of algorithmic mechanism design. We develop a dynamic model where two principals, each equipped with independent Q-learning algorithms, interact with a single agent. Our findings reveal that the strategic behavior of AI principals (cooperation vs. competition) hinges crucially on the alignment of their profits. Notably, greater profit alignment fosters collusive strategies, yielding higher principal profits at the expense of agent incentives. This emergent behavior persists across varying degrees of principal heterogeneity, multiple principals, and environments with uncertainty. Our study underscores the potential of AI for contract automation while raising critical concerns regarding strategic manipulation and the emergence of unintended collusion in AI-driven systems, particularly in the context of the broader AI alignment problem.
- Abstract(参考訳): 本稿では,アルゴリズム機構設計の比較的未検討の側面である,二元原理エージェント設定におけるインセンティブ互換契約を自律的に設計する人工知能(AI)アルゴリズムの能力について検討する。
独立したQ-ラーニングアルゴリズムを備えた2つのプリンシパルが1つのエージェントと対話する動的モデルを開発する。
この結果から、AIプリンシパル(協力対競争)の戦略的行動は、彼らの利益の整合性に決定的に左右されることが明らかとなった。
特に、より大きな利益調整は共同戦略を奨励し、エージェントインセンティブを犠牲にして高い主要な利益をもたらす。
この創発的な挙動は、様々な種類の主不均一性、複数の主成分、不確実性のある環境にまたがって持続する。
我々の研究は、特にAIアライメント問題において、戦略的操作と意図しない共謀の出現に関する重要な懸念を提起しながら、契約自動化におけるAIの可能性を強調している。
関連論文リスト
- Rationality based Innate-Values-driven Reinforcement Learning [1.8220718426493654]
本来の価値はエージェントの本質的なモチベーションを表しており、それはエージェントの本来の関心や目標を追求する好みを反映している。
これはAIエージェントの固有値駆動(IV)行動を記述するための優れたモデルである。
本稿では,階層型強化学習モデルを提案する。
論文 参考訳(メタデータ) (2024-11-14T03:28:02Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Artificial Intelligence and Strategic Decision-Making: Evidence from Entrepreneurs and Investors [1.1060425537315088]
本稿では、企業における戦略的意思決定(SDM)プロセスに人工知能(AI)がどのような影響を与えるかを検討する。
我々は、AIが既存のSDMツールをどのように強化するかを説明し、主要なアクセラレータプログラムとスタートアップコンペティションから経験的な証拠を提供する。
SDMの根底にある重要な認知過程である探索、表現、集約について考察する。
論文 参考訳(メタデータ) (2024-08-16T15:46:15Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
本稿では,マルコフ決定プロセス(MDP)のエージェントを一連の契約でガイドするフレームワークを提案する。
我々は,主観とエージェントの方針を反復的に最適化するメタアルゴリズムを提示し,分析する。
次に,本アルゴリズムを深層Q-ラーニングで拡張し,近似誤差の存在下での収束度を解析する。
論文 参考訳(メタデータ) (2024-07-25T14:28:58Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - A Game-Theoretic Framework for AI Governance [8.658519485150423]
規制当局とAI企業間の戦略的相互作用は、Stackelbergのゲームを連想させる固有の構造を持っていることを示す。
本稿では,AIガバナンスのためのゲーム理論モデリングフレームワークを提案する。
私たちの知る限りでは、この研究はAIガバナンスの分析と構造化にゲーム理論を使った最初のものである。
論文 参考訳(メタデータ) (2023-05-24T08:18:42Z) - Examining the Differential Risk from High-level Artificial Intelligence
and the Question of Control [0.0]
将来のAI能力の範囲と範囲は、依然として重要な不確実性である。
AIの不透明な意思決定プロセスの統合と監視の程度には懸念がある。
本研究では、AIリスクをモデル化し、代替先分析のためのテンプレートを提供する階層的な複雑なシステムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-06T15:46:02Z) - Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement
Learning Approach [130.9259586568977]
本稿では,複数ラウンドの対話を通して動的ビックレー・クラーク・グローブ(VCG)機構を回復するための新しい学習アルゴリズムを提案する。
当社のアプローチの重要な貢献は、報酬のないオンライン強化学習(RL)を取り入れて、リッチな政策分野の探索を支援することである。
論文 参考訳(メタデータ) (2022-02-25T16:17:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。