Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning
- URL: http://arxiv.org/abs/2404.13584v1
- Date: Sun, 21 Apr 2024 08:52:22 GMT
- Title: Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning
- Authors: Zhanjie Zhang, Jiakai Sun, Guangyuan Li, Lei Zhao, Quanwei Zhang, Zehua Lan, Haolin Yin, Wei Xing, Huaizhong Lin, Zhiwen Zuo,
- Abstract summary: In this paper, we introduce an innovative technique to improve the quality of stylized images.
Firstly, we propose Style Consistency Instance Normalization (SCIN), a method to refine the alignment between content and style features.
In addition, we have developed an Instance-based Contrastive Learning (ICL) approach designed to understand relationships among various styles.
- Score: 11.900404048019594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arbitrary style transfer holds widespread attention in research and boasts numerous practical applications. The existing methods, which either employ cross-attention to incorporate deep style attributes into content attributes or use adaptive normalization to adjust content features, fail to generate high-quality stylized images. In this paper, we introduce an innovative technique to improve the quality of stylized images. Firstly, we propose Style Consistency Instance Normalization (SCIN), a method to refine the alignment between content and style features. In addition, we have developed an Instance-based Contrastive Learning (ICL) approach designed to understand the relationships among various styles, thereby enhancing the quality of the resulting stylized images. Recognizing that VGG networks are more adept at extracting classification features and need to be better suited for capturing style features, we have also introduced the Perception Encoder (PE) to capture style features. Extensive experiments demonstrate that our proposed method generates high-quality stylized images and effectively prevents artifacts compared with the existing state-of-the-art methods.
Related papers
- ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - D2Styler: Advancing Arbitrary Style Transfer with Discrete Diffusion Methods [2.468658581089448]
We propose a novel framework called D$2$Styler (Discrete Diffusion Styler)
Our method uses Adaptive Instance Normalization (AdaIN) features as a context guide for the reverse diffusion process.
Experimental results demonstrate that D$2$Styler produces high-quality style-transferred images.
arXiv Detail & Related papers (2024-08-07T05:47:06Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
We introduce StyleAligned, a technique designed to establish style alignment among a series of generated images.
By employing minimal attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models.
Our method's evaluation across diverse styles and text prompts demonstrates high-quality and fidelity.
arXiv Detail & Related papers (2023-12-04T18:55:35Z) - StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter [78.75422651890776]
StyleCrafter is a generic method that enhances pre-trained T2V models with a style control adapter.
To promote content-style disentanglement, we remove style descriptions from the text prompt and extract style information solely from the reference image.
StyleCrafter efficiently generates high-quality stylized videos that align with the content of the texts and resemble the style of the reference images.
arXiv Detail & Related papers (2023-12-01T03:53:21Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
This paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation.
This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer.
arXiv Detail & Related papers (2020-03-17T13:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.