論文の概要: DR.CPO: Diversified and Realistic 3D Augmentation via Iterative
Construction, Random Placement, and HPR Occlusion
- arxiv url: http://arxiv.org/abs/2303.12743v2
- Date: Fri, 28 Apr 2023 08:06:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 16:52:36.637039
- Title: DR.CPO: Diversified and Realistic 3D Augmentation via Iterative
Construction, Random Placement, and HPR Occlusion
- Title(参考訳): dr.cpo:反復構成,ランダム配置,hpr閉塞による多様かつ現実的な3次元拡張
- Authors: Jungwook Shin, Jaeill Kim, Kyungeun Lee, Hyunghun Cho, Wonjong Rhee
- Abstract要約: 自律運転では、データ拡張は一般的に3Dオブジェクトの検出を改善するために使用される。
我々は,全身オブジェクトを柔軟に構築できる,多種多様で現実的な拡張法を開発した。
DR.CPOは、KITTIデータセットで知られている最高の3D検出結果と比較して、mAP性能を2.08%向上させることができる。
- 参考スコア(独自算出の注目度): 2.5461557112299773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, data augmentation is commonly used for improving 3D
object detection. The most basic methods include insertion of copied objects
and rotation and scaling of the entire training frame. Numerous variants have
been developed as well. The existing methods, however, are considerably limited
when compared to the variety of the real world possibilities. In this work, we
develop a diversified and realistic augmentation method that can flexibly
construct a whole-body object, freely locate and rotate the object, and apply
self-occlusion and external-occlusion accordingly. To improve the diversity of
the whole-body object construction, we develop an iterative method that
stochastically combines multiple objects observed from the real world into a
single object. Unlike the existing augmentation methods, the constructed
objects can be randomly located and rotated in the training frame because
proper occlusions can be reflected to the whole-body objects in the final step.
Finally, proper self-occlusion at each local object level and
external-occlusion at the global frame level are applied using the Hidden Point
Removal (HPR) algorithm that is computationally efficient. HPR is also used for
adaptively controlling the point density of each object according to the
object's distance from the LiDAR. Experiment results show that the proposed
DR.CPO algorithm is data-efficient and model-agnostic without incurring any
computational overhead. Also, DR.CPO can improve mAP performance by 2.08% when
compared to the best 3D detection result known for KITTI dataset. The code is
available at https://github.com/SNU-DRL/DRCPO.git
- Abstract(参考訳): 自動運転では、データ拡張は3dオブジェクト検出を改善するために一般的に使用される。
最も基本的な方法は、コピーされたオブジェクトの挿入とトレーニングフレーム全体の回転とスケーリングである。
多くのバリエーションも開発されている。
しかし、既存の手法は現実世界の様々な可能性と比較してかなり制限されている。
本研究では,物体全体を柔軟に構築し,自由な位置と回転を可能とし,それに応じて自己閉塞と外部閉塞を適用可能な,多種多様で現実的な拡張法を開発する。
物体全体の多様性を向上させるため,実世界から観測された複数の物体を1つの物体に確率的に結合する反復手法を開発した。
既存の拡張法と異なり、最終段階において適切な咬合を全身に反映できるため、構築された物体をトレーニングフレーム内にランダムに配置して回転させることができる。
最後に、各局所オブジェクトレベルでの適切な自己閉塞とグローバルフレームレベルでの外部閉塞を、計算効率のよい隠れポイント除去(HPR)アルゴリズムを用いて適用する。
また、HPRはLiDARからの距離に応じて各物体の点密度を適応的に制御するためにも用いられる。
実験の結果,DR.CPOアルゴリズムは計算オーバーヘッドを発生させることなく,データ効率とモデルに依存しないことがわかった。
また、dr.cpoはkittiデータセットで知られている最良の3d検出結果と比較して、地図のパフォーマンスを2.08%向上できる。
コードはhttps://github.com/SNU-DRL/DRCPO.gitで公開されている。
関連論文リスト
- IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
シングルビューRGB-D画像からの3Dオブジェクトの汎用化は依然として難しい課題である。
本稿では,暗黙の場学習と点拡散を調和させる新しい手法IPoDを提案する。
CO3D-v2データセットによる実験では、IPoDの優位性が確認され、Fスコアは7.8%、チャンファー距離は28.6%向上した。
論文 参考訳(メタデータ) (2024-03-30T07:17:37Z) - Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints
Voting for Robust 6D Object Pose Estimation [34.37209136057662]
本稿では,ポーズ推定を改善するために,モーダリティ特性を集約できる新しいDeep Fusion Transformerを提案する。
また, 高精度な3次元キーポイントローカライゼーションのための非定位的グローバル最適化戦略を利用する, 新しい重み付きベクトルワイズ投票アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-10T08:52:08Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
対応性に基づく最適化は3次元シーン再構成の基盤となるが、3次元ビデオオブジェクト検出では研究されていない。
オブジェクト中心の時間対応学習と特徴量付きオブジェクトバンドル調整を備えた、エンドツーエンドで最適化可能なオブジェクト検出器であるBA-Detを提案する。
論文 参考訳(メタデータ) (2023-03-27T17:39:39Z) - ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and
Pose Optimization [40.36229450208817]
SAPO, 関節多物体検出法, 3次元テクスチャ再構築法, 6次元オブジェクトポーズ法, サイズ推定法を提案する。
ShAPOのキーはシングルショットのパイプラインで、各オブジェクトインスタンスのマスクとともに、形状、外観、遅延コードのポーズをレグレッションする。
提案手法は,NOCSデータセット上でのベースライン全体の性能を,6次元ポーズ推定におけるmAPの8%の絶対的な改善で著しく向上させる。
論文 参考訳(メタデータ) (2022-07-27T17:59:31Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
ホログラフィーロス(Homography Loss)と呼ばれる,2次元情報と3次元情報の両方を利用する識別可能なロス関数を提案する。
提案手法は,KITTI 3Dデータセットにおいて,他の最先端技術と比較して高い性能を示す。
論文 参考訳(メタデータ) (2022-04-02T03:48:03Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
そこで本研究では,乱れたオブジェクトを明示的に分離し,オブジェクト深度推定のための複数のアプローチを適応的に組み合わせたモノクル3次元オブジェクト検出のためのフレキシブルなフレームワークを提案する。
実験の結果,本手法はkittiベンチマークテストセットにおいて,中等度レベルが27%,硬度が30%と,最先端法を27%上回った。
論文 参考訳(メタデータ) (2021-04-06T07:01:28Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
単一のRGB画像から複数の3Dオブジェクトを検出し再構成する方法を提案する。
キーポイント検出器は、オブジェクトを中心点としてローカライズし、9-DoF境界ボックスや3D形状を含む全てのオブジェクト特性を直接予測する。
提示されたアプローチは、軽量な再構築を単一ステージで実行し、リアルタイム能力を持ち、完全に微分可能で、エンドツーエンドのトレーナーブルである。
論文 参考訳(メタデータ) (2020-12-21T18:52:21Z) - Factor Graph based 3D Multi-Object Tracking in Point Clouds [8.411514688735183]
明示的および固定的な代入に依存しない新しい最適化に基づくアプローチを提案する。
我々は、実世界のKITTI追跡データセットの性能を実証し、多くの最先端アルゴリズムよりも優れた結果を得る。
論文 参考訳(メタデータ) (2020-08-12T13:34:46Z) - EPOS: Estimating 6D Pose of Objects with Symmetries [57.448933686429825]
1つのRGB入力から利用可能な3次元モデルを用いて、剛体物体の6次元ポーズを推定する新しい手法を提案する。
オブジェクトは、体系的な方法で対称性を許容するコンパクトな表面フラグメントによって表現される。
エンコーダデコーダネットワークを用いて,高密度サンプリング画素とフラグメントの対応性を予測する。
論文 参考訳(メタデータ) (2020-04-01T17:41:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。