DR.CPO: Diversified and Realistic 3D Augmentation via Iterative
Construction, Random Placement, and HPR Occlusion
- URL: http://arxiv.org/abs/2303.12743v4
- Date: Wed, 30 Aug 2023 20:26:25 GMT
- Title: DR.CPO: Diversified and Realistic 3D Augmentation via Iterative
Construction, Random Placement, and HPR Occlusion
- Authors: Jungwook Shin, Jaeill Kim, Kyungeun Lee, Hyunghun Cho, Wonjong Rhee
- Abstract summary: In autonomous driving, data augmentation is commonly used to improve 3D object detection.
We develop a diversified and realistic augmentation method that can flexibly construct a whole-body object.
DR.CPO can improve mAP performance by 2.08% when compared to the best 3D detection result known for KITTI dataset.
- Score: 4.64982780843177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, data augmentation is commonly used for improving 3D
object detection. The most basic methods include insertion of copied objects
and rotation and scaling of the entire training frame. Numerous variants have
been developed as well. The existing methods, however, are considerably limited
when compared to the variety of the real world possibilities. In this work, we
develop a diversified and realistic augmentation method that can flexibly
construct a whole-body object, freely locate and rotate the object, and apply
self-occlusion and external-occlusion accordingly. To improve the diversity of
the whole-body object construction, we develop an iterative method that
stochastically combines multiple objects observed from the real world into a
single object. Unlike the existing augmentation methods, the constructed
objects can be randomly located and rotated in the training frame because
proper occlusions can be reflected to the whole-body objects in the final step.
Finally, proper self-occlusion at each local object level and
external-occlusion at the global frame level are applied using the Hidden Point
Removal (HPR) algorithm that is computationally efficient. HPR is also used for
adaptively controlling the point density of each object according to the
object's distance from the LiDAR. Experiment results show that the proposed
DR.CPO algorithm is data-efficient and model-agnostic without incurring any
computational overhead. Also, DR.CPO can improve mAP performance by 2.08% when
compared to the best 3D detection result known for KITTI dataset. The code is
available at https://github.com/SNU-DRL/DRCPO.git
Related papers
- IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints
Voting for Robust 6D Object Pose Estimation [34.37209136057662]
We propose a novel Deep Fusion Transformer that can aggregate cross-modality features for improving pose estimation.
We also introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization.
arXiv Detail & Related papers (2023-08-10T08:52:08Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection.
We propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment.
arXiv Detail & Related papers (2023-03-27T17:39:39Z) - ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and
Pose Optimization [40.36229450208817]
We present ShAPO, a method for joint multi-object detection, 3D textured reconstruction, 6D object pose and size estimation.
Key to ShAPO is a single-shot pipeline to regress shape, appearance and pose latent codes along with the masks of each object instance.
Our method significantly out-performs all baselines on the NOCS dataset with an 8% absolute improvement in mAP for 6D pose estimation.
arXiv Detail & Related papers (2022-07-27T17:59:31Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
We propose a flexible framework for monocular 3D object detection which explicitly decouples the truncated objects and adaptively combines multiple approaches for object depth estimation.
Experiments demonstrate that our method outperforms the state-of-the-art method by relatively 27% for the moderate level and 30% for the hard level in the test set of KITTI benchmark.
arXiv Detail & Related papers (2021-04-06T07:01:28Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - Factor Graph based 3D Multi-Object Tracking in Point Clouds [8.411514688735183]
We propose a novel optimization-based approach that does not rely on explicit and fixed assignments.
We demonstrate its performance on the real world KITTI tracking dataset and achieve better results than many state-of-the-art algorithms.
arXiv Detail & Related papers (2020-08-12T13:34:46Z) - EPOS: Estimating 6D Pose of Objects with Symmetries [57.448933686429825]
We present a new method for estimating the 6D pose of rigid objects with available 3D models from a single RGB input.
An object is represented by compact surface fragments which allow symmetries in a systematic manner.
Correspondences between densely sampled pixels and the fragments are predicted using an encoder-decoder network.
arXiv Detail & Related papers (2020-04-01T17:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.