Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints
Voting for Robust 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2308.05438v1
- Date: Thu, 10 Aug 2023 08:52:08 GMT
- Title: Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints
Voting for Robust 6D Object Pose Estimation
- Authors: Jun Zhou, Kai Chen, Linlin Xu, Qi Dou, Jing Qin
- Abstract summary: We propose a novel Deep Fusion Transformer that can aggregate cross-modality features for improving pose estimation.
We also introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization.
- Score: 34.37209136057662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One critical challenge in 6D object pose estimation from a single RGBD image
is efficient integration of two different modalities, i.e., color and depth. In
this work, we tackle this problem by a novel Deep Fusion Transformer~(DFTr)
block that can aggregate cross-modality features for improving pose estimation.
Unlike existing fusion methods, the proposed DFTr can better model
cross-modality semantic correlation by leveraging their semantic similarity,
such that globally enhanced features from different modalities can be better
integrated for improved information extraction. Moreover, to further improve
robustness and efficiency, we introduce a novel weighted vector-wise voting
algorithm that employs a non-iterative global optimization strategy for precise
3D keypoint localization while achieving near real-time inference. Extensive
experiments show the effectiveness and strong generalization capability of our
proposed 3D keypoint voting algorithm. Results on four widely used benchmarks
also demonstrate that our method outperforms the state-of-the-art methods by
large margins.
Related papers
- RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
We introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image.
Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence.
arXiv Detail & Related papers (2024-05-14T10:10:45Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - GOOD: General Optimization-based Fusion for 3D Object Detection via
LiDAR-Camera Object Candidates [10.534984939225014]
3D object detection serves as the core basis of the perception tasks in autonomous driving.
Good is a general optimization-based fusion framework that can achieve satisfying detection without training additional models.
Experiments on both nuScenes and KITTI datasets are carried out and the results show that GOOD outperforms by 9.1% on mAP score compared with PointPillars.
arXiv Detail & Related papers (2023-03-17T07:05:04Z) - Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering
of Neural Features [17.920305227880245]
We consider the problem of category-level 6D pose estimation from a single RGB image.
Our approach represents an object category as a cuboid mesh and learns a generative model of the neural feature activations at each mesh.
Our experiments demonstrate an enhanced category-level 6D pose estimation performance compared to prior work.
arXiv Detail & Related papers (2022-09-12T21:31:36Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - 3D Point-to-Keypoint Voting Network for 6D Pose Estimation [8.801404171357916]
We propose a framework for 6D pose estimation from RGB-D data based on spatial structure characteristics of 3D keypoints.
The proposed method is verified on two benchmark datasets, LINEMOD and OCCLUSION LINEMOD.
arXiv Detail & Related papers (2020-12-22T11:43:15Z) - se(3)-TrackNet: Data-driven 6D Pose Tracking by Calibrating Image
Residuals in Synthetic Domains [12.71983073907091]
This work proposes a data-driven optimization approach for long-term, 6D pose tracking.
It aims to identify the optimal relative pose given the current RGB-D observation and a synthetic image conditioned on the previous best estimate and the object's model.
The proposed approach achieves consistently robust estimates and outperforms alternatives, even though they have been trained with real images.
arXiv Detail & Related papers (2020-07-27T21:09:36Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.