Conformal Prediction for Time Series with Modern Hopfield Networks
- URL: http://arxiv.org/abs/2303.12783v2
- Date: Thu, 2 Nov 2023 08:43:11 GMT
- Title: Conformal Prediction for Time Series with Modern Hopfield Networks
- Authors: Andreas Auer, Martin Gauch, Daniel Klotz, Sepp Hochreiter
- Abstract summary: We propose HopCPT, a novel conformal prediction approach for time series.
We show that our approach is theoretically well justified for time series where temporal dependencies are present.
- Score: 6.749483762719583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To quantify uncertainty, conformal prediction methods are gaining
continuously more interest and have already been successfully applied to
various domains. However, they are difficult to apply to time series as the
autocorrelative structure of time series violates basic assumptions required by
conformal prediction. We propose HopCPT, a novel conformal prediction approach
for time series that not only copes with temporal structures but leverages
them. We show that our approach is theoretically well justified for time series
where temporal dependencies are present. In experiments, we demonstrate that
our new approach outperforms state-of-the-art conformal prediction methods on
multiple real-world time series datasets from four different domains.
Related papers
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.
We fill this void by introducing a novel conformal prediction method based on graph deep learning operators.
Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.
Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - Implicit Reasoning in Deep Time Series Forecasting [16.750280337155647]
This work takes an initial step toward assessing the reasoning abilities of deep time series forecasting models.
We find that certain linear, patch-based Transformer models generalize effectively in systematically orchestrated out-of-distribution scenarios.
arXiv Detail & Related papers (2024-09-17T02:11:19Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
We present a new distribution-free conformal prediction algorithm for sequential data (e.g., time series)
We specifically account for the nature that time series data are non-exchangeable, and thus many existing conformal prediction algorithms are not applicable.
arXiv Detail & Related papers (2022-12-07T05:07:27Z) - Copula Conformal Prediction for Multi-step Time Series Forecasting [18.298634240183862]
We propose a Copula Conformal Prediction algorithm for time series forecasting, CopulaCPTS.
We show that CopulaCPTS produces more calibrated and sharp confidence intervals for multi-step prediction tasks than existing techniques.
arXiv Detail & Related papers (2022-12-06T19:32:06Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty.
We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.
arXiv Detail & Related papers (2022-03-09T17:53:47Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.