An algorithmic framework for the optimization of deep neural networks architectures and hyperparameters
- URL: http://arxiv.org/abs/2303.12797v2
- Date: Tue, 14 May 2024 07:37:28 GMT
- Title: An algorithmic framework for the optimization of deep neural networks architectures and hyperparameters
- Authors: Julie Keisler, El-Ghazali Talbi, Sandra Claudel, Gilles Cabriel,
- Abstract summary: We propose an algorithmic framework to automatically generate efficient deep neural networks.
The framework is based on evolving directed acyclic graphs (DAGs)
It allows mixtures of different classical operations: convolutions, recurrences and dense layers, but also more newfangled operations such as self-attention.
- Score: 0.23301643766310373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an algorithmic framework to automatically generate efficient deep neural networks and optimize their associated hyperparameters. The framework is based on evolving directed acyclic graphs (DAGs), defining a more flexible search space than the existing ones in the literature. It allows mixtures of different classical operations: convolutions, recurrences and dense layers, but also more newfangled operations such as self-attention. Based on this search space we propose neighbourhood and evolution search operators to optimize both the architecture and hyper-parameters of our networks. These search operators can be used with any metaheuristic capable of handling mixed search spaces. We tested our algorithmic framework with an evolutionary algorithm on a time series prediction benchmark. The results demonstrate that our framework was able to find models outperforming the established baseline on numerous datasets.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes [0.0]
The research has included four original proposals of algorithms dedicated to neural network architecture search.
Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods.
The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.
arXiv Detail & Related papers (2023-09-25T11:06:35Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
This paper proposes a trilevel neural architecture search (NAS) method for efficient single image super-resolution (SR)
For modeling the discrete search space, we apply a new continuous relaxation on the discrete search spaces to build a hierarchical mixture of network-path, cell-operations, and kernel-width.
An efficient search algorithm is proposed to perform optimization in a hierarchical supernet manner.
arXiv Detail & Related papers (2021-01-17T12:19:49Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z) - Multi-layer local optima networks for the analysis of advanced local
search-based algorithms [0.6299766708197881]
Local Optima Network (LON) is a graph model that compresses the fitness landscape of a particular optimization problem based on a specific neighborhood operator and a local search algorithm.
This paper proposes the concept of multi-layer LONs as well as a methodology to explore these models aiming at extracting metrics for fitness landscape analysis.
arXiv Detail & Related papers (2020-04-29T03:20:01Z) - Sampled Training and Node Inheritance for Fast Evolutionary Neural
Architecture Search [22.483917379706725]
evolutionary neural architecture search (ENAS) has received increasing attention due to the attractive global optimization capability of evolutionary algorithms.
This paper proposes a new framework for fast ENAS based on directed acyclic graph, in which parents are randomly sampled and trained on each mini-batch of training data.
We evaluate the proposed algorithm on the widely used datasets, in comparison with 26 state-of-the-art peer algorithms.
arXiv Detail & Related papers (2020-03-07T12:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.