論文の概要: Uncertainty Calibration for Counterfactual Propensity Estimation in
Recommendation
- arxiv url: http://arxiv.org/abs/2303.12973v1
- Date: Thu, 23 Mar 2023 00:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 16:11:09.851199
- Title: Uncertainty Calibration for Counterfactual Propensity Estimation in
Recommendation
- Title(参考訳): 勧告における不確実性校正
- Authors: Wenbo Hu, Xin Sun, Qiang liu, Shu Wu
- Abstract要約: レコメンデーションシステムでは、選択バイアスのために評価の大部分が欠落している。
反事実逆確率スコア (IPS) は, 観測された各評価値の計算誤差の重み付けに用いられた。
複数のシナリオにおいて有効であるが,不確実性推定の不確かさによりIPS推定の性能は制限されていると論じる。
- 参考スコア(独自算出の注目度): 22.323016453910775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recommendation systems, a large portion of the ratings are missing due to
the selection biases, which is known as Missing Not At Random. The
counterfactual inverse propensity scoring (IPS) was used to weight the
imputation error of every observed rating. Although effective in multiple
scenarios, we argue that the performance of IPS estimation is limited due to
the uncertainty miscalibration of propensity estimation. In this paper, we
propose the uncertainty calibration for the propensity estimation in
recommendation systems with multiple representative uncertainty calibration
techniques. Theoretical analysis on the bias and generalization bound shows the
superiority of the calibrated IPS estimator over the uncalibrated one.
Experimental results on the coat and yahoo datasets shows that the uncertainty
calibration is improved and hence brings the better recommendation results.
- Abstract(参考訳): レコメンデーションシステムでは、選択バイアスのために評価の大部分が欠落している。
反事実逆確率スコア (IPS) は, 観測された各評価値の計算誤差の重み付けに用いられた。
複数のシナリオにおいて有効であるが,不確実性推定の不確かさによりIPS推定の性能は制限されていると論じる。
本稿では,複数の代表的不確実性校正手法を用いたレコメンデーションシステムにおける不確実性評価手法を提案する。
偏りと一般化境界の理論解析は、校正されたIPS推定器が未校正値よりも優れていることを示している。
coat と yahoo データセットの実験結果は不確実性校正が改善され、より良い推奨結果をもたらすことを示している。
関連論文リスト
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Probabilistic Scores of Classifiers, Calibration is not Enough [0.32985979395737786]
二項分類タスクでは、確率的予測の正確な表現が実世界の様々な応用に不可欠である。
本研究では,予測スコアと真の確率分布の一致を優先するアプローチを強調した。
その結果,従来の校正基準の限界が明らかとなり,重要な意思決定のための予測モデルの信頼性を損なう可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-06T19:53:00Z) - Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
攻撃はキャリブレーションを著しく損なう可能性を示し, 対向的摂動下でのキャリブレーションにおける最悪のキャリブレーション境界として認定キャリブレーションを提案する。
我々は,新しいキャリブレーション攻撃を提案し,テクスタディバーショナルキャリブレーショントレーニングによりモデルキャリブレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2024-05-22T18:52:09Z) - Doubly Calibrated Estimator for Recommendation on Data Missing Not At
Random [20.889464448762176]
既存の推定器は誤判定された暗黙の誤りと正当性スコアに依存していると我々は主張する。
本稿では,計算モデルと確率モデルの両方のキャリブレーションを含む二重校正推定器を提案する。
論文 参考訳(メタデータ) (2024-02-26T05:08:52Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - U-Calibration: Forecasting for an Unknown Agent [29.3181385170725]
単一のスコアリングルールに対する予測を最適化することは、すべてのエージェントに対して低い後悔を保証できないことを示す。
予測列の最大後悔度に匹敵するU校正と呼ばれる予測を評価するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-06-30T23:05:26Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
本稿では,予測性能の異なる相補的な側面に焦点をあてた診断グラフィックのトリチチを提案し,研究する。
信頼性図は校正に対処し、受信動作特性(ROC)曲線は識別能力を診断し、マーフィー図は全体的な予測性能と価値を視覚化する。
論文 参考訳(メタデータ) (2023-01-25T19:35:23Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
各校正誤差を適切なスコアに関連付ける適切な校正誤差の枠組みを導入する。
この関係は、モデルのキャリブレーションの改善を確実に定量化するために利用することができる。
論文 参考訳(メタデータ) (2022-03-15T12:46:08Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Understanding and Mitigating the Tradeoff Between Robustness and
Accuracy [88.51943635427709]
逆行訓練は、堅牢なエラーを改善するために、摂動でトレーニングセットを増強する。
拡張摂動が最適線形予測器からノイズのない観測を行う場合であっても,標準誤差は増大する可能性がある。
論文 参考訳(メタデータ) (2020-02-25T08:03:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。