Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence
- URL: http://arxiv.org/abs/2303.12999v1
- Date: Thu, 23 Mar 2023 02:42:10 GMT
- Title: Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence
- Authors: Chaoqun You, Kun Guo, Gang Feng, Peng Yang, Tony Q. S. Quek
- Abstract summary: Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
- Score: 83.58839320635956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) can be used in mobile edge networks to train machine
learning models in a distributed manner. Recently, FL has been interpreted
within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL
significant advantages in fast adaptation and convergence over heterogeneous
datasets. However, existing research simply combines MAML and FL without
explicitly addressing how much benefit MAML brings to FL and how to maximize
such benefit over mobile edge networks. In this paper, we quantify the benefit
from two aspects: optimizing FL hyperparameters (i.e., sampled data size and
the number of communication rounds) and resource allocation (i.e., transmit
power) in mobile edge networks. Specifically, we formulate the MAML-based FL
design as an overall learning time minimization problem, under the constraints
of model accuracy and energy consumption. Facilitated by the convergence
analysis of MAML-based FL, we decompose the formulated problem and then solve
it using analytical solutions and the coordinate descent method. With the
obtained FL hyperparameters and resource allocation, we design a MAML-based FL
algorithm, called Automated Federated Learning (AutoFL), that is able to
conduct fast adaptation and convergence. Extensive experimental results verify
that AutoFL outperforms other benchmark algorithms regarding the learning time
and convergence performance.
Related papers
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - On-the-fly Resource-Aware Model Aggregation for Federated Learning in
Heterogeneous Edge [15.932747809197517]
Edge computing has revolutionized the world of mobile and wireless networks world thanks to its flexible, secure, and performing characteristics.
In this paper, we conduct an in-depth study of strategies to replace a central aggregation server with a flying master.
Our results demonstrate a significant reduction of runtime using our flying master FL framework compared to the original FL from measurements results conducted in our EdgeAI testbed and over real 5G networks.
arXiv Detail & Related papers (2021-12-21T19:04:42Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
The problem of delay computation for federated learning (FL) over wireless communication networks is investigated.
A bisection search algorithm is proposed to obtain the optimal solution.
Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
arXiv Detail & Related papers (2020-07-05T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.