SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization
- URL: http://arxiv.org/abs/2303.13035v3
- Date: Fri, 4 Aug 2023 07:49:26 GMT
- Title: SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization
- Authors: Yu-Neng Chuang, Ruixiang Tang, Xiaoqian Jiang, Xia Hu
- Abstract summary: We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
- Score: 50.01382938451978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic health records (EHRs) store an extensive array of patient
information, encompassing medical histories, diagnoses, treatments, and test
outcomes. These records are crucial for enabling healthcare providers to make
well-informed decisions regarding patient care. Summarizing clinical notes
further assists healthcare professionals in pinpointing potential health risks
and making better-informed decisions. This process contributes to reducing
errors and enhancing patient outcomes by ensuring providers have access to the
most pertinent and current patient data. Recent research has shown that
incorporating prompts with large language models (LLMs) substantially boosts
the efficacy of summarization tasks. However, we show that this approach also
leads to increased output variance, resulting in notably divergent outputs even
when prompts share similar meanings. To tackle this challenge, we introduce a
model-agnostic Soft Prompt-Based Calibration (SPeC) pipeline that employs soft
prompts to diminish variance while preserving the advantages of prompt-based
summarization. Experimental findings on multiple clinical note tasks and LLMs
indicate that our method not only bolsters performance but also effectively
curbs variance for various LLMs, providing a more uniform and dependable
solution for summarizing vital medical information.
Related papers
- XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Extrinsically-Focused Evaluation of Omissions in Medical Summarization [9.847304366680772]
Large language models (LLMs) have shown promise in safety-critical applications such as healthcare, yet the ability to quantify performance has lagged.
We propose MED-OMIT as a metric to explore the challenge of evaluating a summary of a patient's medical record.
arXiv Detail & Related papers (2023-11-14T16:46:15Z) - Deciphering Diagnoses: How Large Language Models Explanations Influence
Clinical Decision Making [0.0]
Large Language Models (LLMs) are emerging as a promising tool to generate plain-text explanations for medical decisions.
This study explores the effectiveness and reliability of LLMs in generating explanations for diagnoses based on patient complaints.
arXiv Detail & Related papers (2023-10-03T00:08:23Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.