Reimagining Application User Interface (UI) Design using Deep Learning
Methods: Challenges and Opportunities
- URL: http://arxiv.org/abs/2303.13055v1
- Date: Thu, 23 Mar 2023 05:59:56 GMT
- Title: Reimagining Application User Interface (UI) Design using Deep Learning
Methods: Challenges and Opportunities
- Authors: Subtain Malik, Muhammad Tariq Saeed, Marya Jabeen Zia, Shahzad Rasool,
Liaquat Ali Khan, and Mian Ilyas Ahmed
- Abstract summary: The survey encompasses well known deep learning techniques and datasets widely used to design user interface applications.
We believe that the use of deep learning for user interface design automation tasks could be one of the high potential fields for the advancement of the software development industry.
- Score: 0.769672852567215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a review of the recent work in deep learning
methods for user interface design. The survey encompasses well known deep
learning techniques (deep neural networks, convolutional neural networks,
recurrent neural networks, autoencoders, and generative adversarial networks)
and datasets widely used to design user interface applications. We highlight
important problems and emerging research frontiers in this field. We believe
that the use of deep learning for user interface design automation tasks could
be one of the high potential fields for the advancement of the software
development industry.
Related papers
- Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks [5.791414814676125]
This paper develops an innovative method that enables neural networks to generate and utilize knowledge graphs.
Our approach eschews traditional dependencies on or word embedding models, mining concepts from neural networks and directly aligning them with human knowledge.
Experiments show that our method consistently captures network-generated concepts that align closely with human knowledge and can even uncover new, useful concepts not previously identified by humans.
arXiv Detail & Related papers (2024-04-23T20:33:17Z) - Deep Internal Learning: Deep Learning from a Single Input [88.59966585422914]
In many cases there is value in training a network just from the input at hand.
This is particularly relevant in many signal and image processing problems where training data is scarce and diversity is large.
This survey paper aims at covering deep internal-learning techniques that have been proposed in the past few years for these two important directions.
arXiv Detail & Related papers (2023-12-12T16:48:53Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
Placement and routing are two indispensable and challenging (NP-hard) tasks in modern chip design flows.
Machine learning has shown promising prospects by its data-driven nature, which can be of less reliance on knowledge and priors.
arXiv Detail & Related papers (2022-02-28T06:28:44Z) - Implementing Spiking Neural Networks on Neuromorphic Architectures: A
Review [0.19573380763700707]
We highlight challenges and opportunities that the future holds in the area of system software technology for neuromorphic computing.
We provide a comprehensive overview of such frameworks proposed for both, platform-based design and hardware-software co-design.
arXiv Detail & Related papers (2022-02-17T21:00:59Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - Applications of Deep Neural Networks with Keras [0.0]
Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain.
This course will introduce the student to classic neural network structures, Conversa Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adrial Networks (GAN)
arXiv Detail & Related papers (2020-09-11T22:09:10Z) - Deep learning approaches for neural decoding: from CNNs to LSTMs and
spikes to fMRI [2.0178765779788495]
Decoding behavior, perception, or cognitive state directly from neural signals has applications in brain-computer interface research.
In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks.
Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks.
arXiv Detail & Related papers (2020-05-19T18:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.