Trajectory-Prediction with Vision: A Survey
- URL: http://arxiv.org/abs/2303.13354v1
- Date: Wed, 15 Mar 2023 01:06:54 GMT
- Title: Trajectory-Prediction with Vision: A Survey
- Authors: Apoorv Singh
- Abstract summary: Trajectory prediction is an extremely challenging task which recently gained a lot of attention in the autonomous vehicle research community.
A good prediction model can prevent collisions on the road, and hence the ultimate goal for autonomous vehicles: Collision rate: collisions per Million miles.
We categorize the relevant algorithms into different classes so that researchers can follow through the trends in the trajectory-prediction research field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To plan a safe and efficient route, an autonomous vehicle should anticipate
future trajectories of other agents around it. Trajectory prediction is an
extremely challenging task which recently gained a lot of attention in the
autonomous vehicle research community. Trajectory-prediction forecasts future
state of all the dynamic agents in the scene given their current and past
states. A good prediction model can prevent collisions on the road, and hence
the ultimate goal for autonomous vehicles: Collision rate: collisions per
Million miles. The objective of this paper is to provide an overview of the
field trajectory-prediction. We categorize the relevant algorithms into
different classes so that researchers can follow through the trends in the
trajectory-prediction research field. Moreover we also touch upon the
background knowledge required to formulate a trajectory-prediction problem.
Related papers
- Manipulating Trajectory Prediction with Backdoors [94.22382859996453]
We describe and investigate four triggers that could affect trajectory prediction.
The model has good benign performance but is vulnerable to backdoors.
We evaluate a range of defenses against backdoors.
arXiv Detail & Related papers (2023-12-21T14:01:51Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Multi-modal Transformer Path Prediction for Autonomous Vehicle [15.729029675380083]
We propose a path prediction system named Multi-modal Transformer Path Prediction (MTPP) that aims to predict long-term future trajectory of target agents.
To achieve more accurate path prediction, the Transformer architecture is adopted in our model.
An extensive evaluation is conducted to show the efficacy of the proposed system using nuScene, a real-world trajectory forecasting dataset.
arXiv Detail & Related papers (2022-08-15T15:09:26Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - LOKI: Long Term and Key Intentions for Trajectory Prediction [22.097307597204736]
Recent advances in trajectory prediction have shown that explicit reasoning about agents' intent is important to accurately forecast their motion.
We propose LOKI (LOng term and Key Intentions), a novel large-scale dataset that is designed to tackle joint trajectory and intention prediction.
We show our method outperforms state-of-the-art trajectory prediction methods by upto $27%$ and also provide a baseline for frame-wise intention estimation.
arXiv Detail & Related papers (2021-08-18T16:57:03Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
We develop a target-driven trajectory prediction framework for moving agents.
We benchmark it on trajectory prediction of vehicles and pedestrians.
We outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
arXiv Detail & Related papers (2020-08-19T06:52:46Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.