Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
- URL: http://arxiv.org/abs/2503.03262v1
- Date: Wed, 05 Mar 2025 08:38:51 GMT
- Title: Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
- Authors: Nadya Abdel Madjid, Abdulrahman Ahmad, Murad Mebrahtu, Yousef Babaa, Abdelmoamen Nasser, Sumbal Malik, Bilal Hassan, Naoufel Werghi, Jorge Dias, Majid Khonji,
- Abstract summary: This paper reviews a substantial portion of recent trajectory prediction methods and devises a taxonomy to classify existing solutions.<n>In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
- Score: 8.367374274783614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the potential for autonomous vehicles to be integrated on a large scale into modern traffic systems continues to grow, ensuring safe navigation in dynamic environments is crucial for smooth integration. To guarantee safety and prevent collisions, autonomous vehicles must be capable of accurately predicting the trajectories of surrounding traffic agents. Over the past decade, significant efforts from both academia and industry have been dedicated to designing solutions for precise trajectory forecasting. These efforts have produced a diverse range of approaches, raising questions about the differences between these methods and whether trajectory prediction challenges have been fully addressed. This paper reviews a substantial portion of recent trajectory prediction methods and devises a taxonomy to classify existing solutions. A general overview of the prediction pipeline is also provided, covering input and output modalities, modeling features, and prediction paradigms discussed in the literature. In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
Related papers
- A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction [12.336412741837407]
This study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, it effectively combines advanced trajectory prediction networks with a DOS prediction module.
The innovative contributions of this study include the development of a novel DOS prediction model specifically tailored for navigating complex scenarios.
arXiv Detail & Related papers (2024-02-29T17:36:39Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
We have examined over two hundred studies related to trajectory prediction in the context of AVs.
This review conducts a comprehensive evaluation of several deep learning-based techniques.
By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction.
arXiv Detail & Related papers (2023-07-12T10:20:19Z) - Trajectory-Prediction with Vision: A Survey [0.0]
Trajectory prediction is an extremely challenging task which recently gained a lot of attention in the autonomous vehicle research community.
A good prediction model can prevent collisions on the road, and hence the ultimate goal for autonomous vehicles: Collision rate: collisions per Million miles.
We categorize the relevant algorithms into different classes so that researchers can follow through the trends in the trajectory-prediction research field.
arXiv Detail & Related papers (2023-03-15T01:06:54Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
Behavioral Intention Prediction (BIP) simulates a human consideration process and fulfills the early prediction of specific behaviors.
This work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications.
arXiv Detail & Related papers (2022-11-01T11:07:37Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.