Human Behavior in the Time of COVID-19: Learning from Big Data
- URL: http://arxiv.org/abs/2303.13452v1
- Date: Thu, 23 Mar 2023 17:19:26 GMT
- Title: Human Behavior in the Time of COVID-19: Learning from Big Data
- Authors: Hanjia Lyu, Arsal Imtiaz, Yufei Zhao, Jiebo Luo
- Abstract summary: Since March 2020, there have been over 600 million confirmed cases of COVID-19 and more than six million deaths.
The pandemic has impacted and even changed human behavior in almost every aspect.
Researchers have been employing big data techniques such as natural language processing, computer vision, audio signal processing, frequent pattern mining, and machine learning.
- Score: 71.26355067309193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the World Health Organization (WHO) characterized COVID-19 as a
pandemic in March 2020, there have been over 600 million confirmed cases of
COVID-19 and more than six million deaths as of October 2022. The relationship
between the COVID-19 pandemic and human behavior is complicated. On one hand,
human behavior is found to shape the spread of the disease. On the other hand,
the pandemic has impacted and even changed human behavior in almost every
aspect. To provide a holistic understanding of the complex interplay between
human behavior and the COVID-19 pandemic, researchers have been employing big
data techniques such as natural language processing, computer vision, audio
signal processing, frequent pattern mining, and machine learning. In this
study, we present an overview of the existing studies on using big data
techniques to study human behavior in the time of the COVID-19 pandemic. In
particular, we categorize these studies into three groups - using big data to
measure, model, and leverage human behavior, respectively. The related tasks,
data, and methods are summarized accordingly. To provide more insights into how
to fight the COVID-19 pandemic and future global catastrophes, we further
discuss challenges and potential opportunities.
Related papers
- A Summary of the ComParE COVID-19 Challenges [34.6136469222737]
We present a summary of the results from the INTERSPEECH 2021 Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS)
One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals' respiratory sounds.
arXiv Detail & Related papers (2022-02-17T18:50:20Z) - Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19)
Pandemic: A Survey on the State-of-the-Arts [10.741018907229927]
The very first infected novel coronavirus case (COVID-19) was found in Hubei, China in Dec. 2019.
The COVID-19 pandemic has spread over 214 countries and areas in the world, and has significantly affected every aspect of our daily lives.
Motivated by recent advances and applications of artificial intelligence (AI) and big data in various areas, this paper aims at emphasizing their importance in responding to the COVID-19 outbreak.
arXiv Detail & Related papers (2021-07-17T13:12:30Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-US is an open-access benchmark dataset of COVID-19 related ultrasound imaging data.
It consists of 93 lung ultrasound videos and 10,774 processed images of patients infected with SARS-CoV-2 pneumonia, non-SARS-CoV-2 pneumonia, as well as healthy control cases.
arXiv Detail & Related papers (2021-03-18T03:31:33Z) - Machine Learning on the COVID-19 Pandemic, Human Mobility and Air
Quality: A Review [0.0]
This study aims to analyze results from past research to understand the interactions among the COVID-19 pandemic, lockdown measures, human mobility, and air quality.
ML is a powerful, effective, and robust analytic paradigm to handle complex and wicked problems such as a global pandemic.
arXiv Detail & Related papers (2021-03-13T10:08:24Z) - Artificial Intelligence (AI) in Action: Addressing the COVID-19 Pandemic
with Natural Language Processing (NLP) [8.281080540533559]
Natural language processing can be applied to address many of the information needs made urgent by the COVID-19 pandemic.
This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic.
arXiv Detail & Related papers (2020-10-09T22:10:43Z) - The Past, Present, and Future of COVID-19: A Data-Driven Perspective [4.373183416616983]
We report results on our development and deployment of a web-based integrated real-time operational dashboard as an important decision support system for COVID-19.
We conducted data-driven analysis based on available data from diverse authenticated sources to predict upcoming consequences of the pandemic.
We also explored correlations between pandemic spread and important socio-economic and environmental factors.
arXiv Detail & Related papers (2020-08-12T19:03:57Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - A Survey on Applications of Artificial Intelligence in Fighting Against
COVID-19 [75.84689958489724]
The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak.
As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic.
This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19.
arXiv Detail & Related papers (2020-07-04T22:48:15Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.