The Past, Present, and Future of COVID-19: A Data-Driven Perspective
- URL: http://arxiv.org/abs/2008.05531v1
- Date: Wed, 12 Aug 2020 19:03:57 GMT
- Title: The Past, Present, and Future of COVID-19: A Data-Driven Perspective
- Authors: Ajwad Akil, Ishrat Jahan Eliza, Md. Hasibul Hussain Hisham, Fahim
Morshed, Nazmus Sakib, Nuwaisir Rabi, Abir Mohammad Turza, Sriram Chellappan,
A. B. M. Alim Al Islam
- Abstract summary: We report results on our development and deployment of a web-based integrated real-time operational dashboard as an important decision support system for COVID-19.
We conducted data-driven analysis based on available data from diverse authenticated sources to predict upcoming consequences of the pandemic.
We also explored correlations between pandemic spread and important socio-economic and environmental factors.
- Score: 4.373183416616983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epidemics and pandemics have ravaged human life since time. To combat these,
novel ideas have always been created and deployed by humanity, with varying
degrees of success. At this very moment, the COVID-19 pandemic is the singular
global health crisis. Now, perhaps for the first time in human history, almost
the whole of humanity is experiencing some form of hardship as a result of one
invisible pathogen. This once again entails novel ideas for quick eradication,
healing and recovery, whether it is healthcare, banking, travel, education or
any other. For efficient policy-making, clear trends of past, present and
future are vital for policy-makers. With the global impacts of COVID-19 so
severe, equally important is the analysis of correlations between disease
spread and various socio-economic and environmental factors. Furthermore, all
of these need to be presented in an integrated manner in real-time to
facilitate efficient policy making. To address these issues, in this study, we
report results on our development and deployment of a web-based integrated
real-time operational dashboard as an important decision support system for
COVID-19. In our study, we conducted data-driven analysis based on available
data from diverse authenticated sources to predict upcoming consequences of the
pandemic through rigorous modeling and statistical analyses. We also explored
correlations between pandemic spread and important socio-economic and
environmental factors. Furthermore, we also present how outcomes of our work
can facilitate efficient policy making in this critical hour.
Related papers
- First 100 days of pandemic; an interplay of pharmaceutical, behavioral
and digital interventions -- A study using agent based modeling [14.192977334409104]
We simulate realistic pharmaceutical, behavioral, and digital interventions that mirror challenges in real-world policy adoption.
Our analysis reveals the pivotal role of the initial 100 days in dictating a pandemic's course.
arXiv Detail & Related papers (2024-01-09T19:38:59Z) - Human Behavior in the Time of COVID-19: Learning from Big Data [71.26355067309193]
Since March 2020, there have been over 600 million confirmed cases of COVID-19 and more than six million deaths.
The pandemic has impacted and even changed human behavior in almost every aspect.
Researchers have been employing big data techniques such as natural language processing, computer vision, audio signal processing, frequent pattern mining, and machine learning.
arXiv Detail & Related papers (2023-03-23T17:19:26Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy.
Existing studies rely on the aggregation of traditional statistical models and epidemic spread theory.
We propose a novel framework, Social Media enhAnced pandemic knowledge based on the extracted events and relationships.
arXiv Detail & Related papers (2021-08-08T15:46:05Z) - STOPPAGE: Spatio-temporal Data Driven Cloud-Fog-Edge Computing Framework
for Pandemic Monitoring and Management [28.205715426050105]
It is absolutely necessary to develop an analytics framework to deliver insights in improving administrative policy and enhance the preparedness to combat the pandemic.
This paper proposes a STOP-temporal knowledge mining framework, named STOP to model the impact of human mobility and contextual information over large geographic area in different temporal scales.
The framework has two modules: (i) S-temporal data and computing infrastructure using fog/edge based architecture; and (ii) S-temporal data analytics module to efficiently extract knowledge from heterogeneous data sources.
arXiv Detail & Related papers (2021-04-04T12:29:31Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
This study aims to provide a predictive analytics framework to model, predict and simulate COVID-19 propagation and socio-economic impact.
We have leveraged a recently launched open-source COVID-19 big data platform and used published research to find potentially relevant variables.
An advanced machine learning pipeline has been developed armed with a self-evolving model, deployed on a modern machine learning architecture.
arXiv Detail & Related papers (2021-01-11T15:08:07Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
We use a detailed set of mobility data to evaluate the impact that stay-at-home orders had on the spread of COVID-19 in the US.
We show that there is a unidirectional Granger causality, from the median percentage of time spent daily at home to the daily number of COVID-19-related deaths with a lag of 2 weeks.
arXiv Detail & Related papers (2020-06-23T03:36:19Z) - The challenges of deploying artificial intelligence models in a rapidly
evolving pandemic [10.188172055060544]
We argue that both basic and applied research are essential to accelerate the potential of AI models.
This perspective may provide a glimpse into how the global scientific community should react to combat future disease outbreaks more effectively.
arXiv Detail & Related papers (2020-05-19T21:11:48Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.