論文の概要: Uncertainty-Aware Workload Prediction in Cloud Computing
- arxiv url: http://arxiv.org/abs/2303.13525v1
- Date: Fri, 24 Feb 2023 14:51:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 16:35:46.591105
- Title: Uncertainty-Aware Workload Prediction in Cloud Computing
- Title(参考訳): クラウドコンピューティングにおける不確実性を考慮したワークロード予測
- Authors: Andrea Rossi and Andrea Visentin and Steven Prestwich and Kenneth N.
Brown
- Abstract要約: 将来の需要の不確実性は予測の質を改善し、過割による無駄を減らす。
我々は、これらのモデルをトレーニングするための異なるトレーニングシナリオを設計し、各手順は、複数のデータセット上で事前トレーニングと微調整のステップの異なる組み合わせである。
大規模な実験では、複数のデータセットによる事前トレーニングによってパフォーマンスが向上する一方で、微調整は行わないことが示されている。
我々のモデルは、関連するが目に見えない時系列に基づいて一般化され、伝達学習能力が証明される。
- 参考スコア(独自算出の注目度): 2.064612766965483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting future resource demand in Cloud Computing is essential for
managing Cloud data centres and guaranteeing customers a minimum Quality of
Service (QoS) level. Modelling the uncertainty of future demand improves the
quality of the prediction and reduces the waste due to overallocation. In this
paper, we propose univariate and bivariate Bayesian deep learning models to
predict the distribution of future resource demand and its uncertainty. We
design different training scenarios to train these models, where each procedure
is a different combination of pretraining and fine-tuning steps on multiple
datasets configurations. We also compare the bivariate model to its univariate
counterpart training with one or more datasets to investigate how different
components affect the accuracy of the prediction and impact the QoS. Finally,
we investigate whether our models have transfer learning capabilities.
Extensive experiments show that pretraining with multiple datasets boosts
performances while fine-tuning does not. Our models generalise well on related
but unseen time series, proving transfer learning capabilities. Runtime
performance analysis shows that the models are deployable in real-world
applications. For this study, we preprocessed twelve datasets from real-world
traces in a consistent and detailed way and made them available to facilitate
the research in this field.
- Abstract(参考訳): クラウドコンピューティングにおける将来のリソース需要を予測することは、クラウドデータセンタを管理し、顧客に最小品質のサービス(QoS)レベルを保証するために不可欠である。
将来の需要の不確実性のモデル化は予測の品質を改善し、過割による無駄を減らす。
本稿では,将来の資源需要の分布とその不確実性を予測するために,ベイズ深層学習モデルを提案する。
我々はこれらのモデルをトレーニングするための異なるトレーニングシナリオを設計し、各手順は、複数のデータセット設定に対する事前トレーニングと微調整のステップの異なる組み合わせである。
また,2変量モデルと1つ以上のデータセットとの無変量学習を比較し,予測の精度とqosへの影響について検討した。
最後に,モデルが伝達学習能力を持つかどうかを検討する。
大規模な実験では、複数のデータセットによる事前トレーニングによってパフォーマンスが向上する一方で、微調整は行われない。
私たちのモデルは、関連するが未熟な時系列をうまく一般化し、転送学習能力を証明する。
実行時のパフォーマンス分析は、モデルが現実世界のアプリケーションにデプロイ可能であることを示している。
本研究では,実世界の痕跡から得られた12のデータセットを,一貫した,詳細な方法で前処理し,この分野の研究を促進する。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Singular Value Penalization and Semantic Data Augmentation for Fully
Test-Time Adaptation [5.891527229524256]
テスト時間適応(FTTA)は、テストフェーズ中にソースドメイン上でトレーニングされたモデルをターゲットドメインに適応させる。
本稿では,その分散を最小化しながら特異値の和を最大化することを提案する。
これにより、モデルがより小さな特異値に焦点を合わせ、より挑戦的なクラス間の差別性を高め、予測結果の多様性を効果的に増大させることができる。
論文 参考訳(メタデータ) (2023-12-10T01:08:56Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
ワンショット・フェデレーション・ラーニング (OSFL) は, 通信コストの低さから近年注目されている。
本稿では,OSFLに拡散モデルがもたらす新たな機会を探求し,FedCADOを提案する。
FedCADOはクライアントのディストリビューションに準拠したデータを生成し、その後、サーバ上で集約されたモデルをトレーニングします。
論文 参考訳(メタデータ) (2023-11-15T11:11:25Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
本稿では、すでに訓練済みの予測器に対するデータセットの一部の影響を除去するために特別に設計された機械学習の概念を紹介する。
局所モデルパラメータ変化の感度を影響関数とサンプル再重み付けを用いて評価することにより,性能認識アルゴリズムを提案する。
リアルな負荷データセットを用いて,線形,CNN,Mixerベースの負荷予測器上で,未学習アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-08-28T08:50:12Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
オフラインのデータ駆動意思決定は、アクティブなインタラクションなしで最適化された決定を合成する。
オフラインデータからトレーニングされたモデルへの入力に関して最適化する場合、誤って良いように見えるアウト・オブ・ディストリビューション(OOD)インプットを生成するのは簡単です。
本稿では、オフラインデータ駆動意思決定をドメイン適応として定式化し、最適化された決定値の正確な予測を行うことを目標とする。
論文 参考訳(メタデータ) (2022-11-21T11:01:37Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
ソースフリードメイン適応(SFDA)は、事前訓練されたソースモデルのみを使用することで、未ラベルのターゲットデータセットに分類器を適応させることを目的としている。
本稿では、ソースモデル予測の不確実性を定量化し、ターゲット適応の導出に利用することを提案する。
論文 参考訳(メタデータ) (2022-08-16T08:03:30Z) - Trust-Based Cloud Machine Learning Model Selection For Industrial IoT
and Smart City Services [5.333802479607541]
クラウドサービスプロバイダがリソース制約のあるデバイスからビッグデータを収集し、機械学習予測モデルを構築するパラダイムを考察する。
提案手法は,MLモデルの信頼度を最大化する知的時間再構成を含む。
その結果,選択したモデルの信頼度は,ILPを用いた結果に比べて0.7%から2.53%低かった。
論文 参考訳(メタデータ) (2020-08-11T23:58:03Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。