Efficient hybrid modeling and sorption model discovery for non-linear
advection-diffusion-sorption systems: A systematic scientific machine
learning approach
- URL: http://arxiv.org/abs/2303.13555v3
- Date: Tue, 25 Apr 2023 18:05:03 GMT
- Title: Efficient hybrid modeling and sorption model discovery for non-linear
advection-diffusion-sorption systems: A systematic scientific machine
learning approach
- Authors: Vinicius V. Santana, Erbet Costa, Carine M. Rebello, Ana Mafalda
Ribeiro, Chris Rackauckas, Idelfonso B. R. Nogueira
- Abstract summary: This study presents a systematic machine learning approach for creating efficient hybrid models and discovering sorption uptake models in non-fusion advection-difsorption systems.
It demonstrates an effective method to train these complex systems using gradient based analysis, adjoint sensitivity analysis, and JIT-compiled vector Jacobian products, combined with spatial discretization and adaptive discretization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a systematic machine learning approach for creating
efficient hybrid models and discovering sorption uptake models in non-linear
advection-diffusion-sorption systems. It demonstrates an effective method to
train these complex systems using gradient based optimizers, adjoint
sensitivity analysis, and JIT-compiled vector Jacobian products, combined with
spatial discretization and adaptive integrators. Sparse and symbolic regression
were employed to identify missing functions in the artificial neural network.
The robustness of the proposed method was tested on an in-silico data set of
noisy breakthrough curve observations of fixed-bed adsorption, resulting in a
well-fitted hybrid model. The study successfully reconstructed sorption uptake
kinetics using sparse and symbolic regression, and accurately predicted
breakthrough curves using identified polynomials, highlighting the potential of
the proposed framework for discovering sorption kinetic law structures.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
This paper develops an efficient Bayesian inference approach for partially observed enzymatic reaction network (SRN)
An interpretable linear noise approximation (LNA) metamodel is proposed to approximate the likelihood of observations.
An efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of Markov Chain Monte Carlo.
arXiv Detail & Related papers (2024-05-05T01:54:21Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
This paper presents a machine learning framework for Bayesian systems identification from noisy, sparse and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
The use of sparsity-promoting priors enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics.
arXiv Detail & Related papers (2020-04-15T00:51:14Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network.
Data assimilation is used to optimally combine a surrogate model with sparse data.
The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model.
Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach.
arXiv Detail & Related papers (2020-01-06T12:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.