論文の概要: Return of the RNN: Residual Recurrent Networks for Invertible Sentence
Embeddings
- arxiv url: http://arxiv.org/abs/2303.13570v1
- Date: Thu, 23 Mar 2023 15:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 16:57:16.168144
- Title: Return of the RNN: Residual Recurrent Networks for Invertible Sentence
Embeddings
- Title(参考訳): RNNの復帰: 可逆文埋め込みのための残差リカレントネットワーク
- Authors: Jeremy Wilkerson
- Abstract要約: 本研究では、教師なし符号化タスクで訓練された残効再帰ネットワークを用いて、非可逆文埋め込みのための新しいモデルを提案する。
ニューラルネットワーク翻訳モデルに共通する確率的出力ではなく、回帰に基づく出力層を用いて入力シーケンスのワードベクトルを再構成する。
RNNはLSTMや2次最適化法などのメモリユニットを必要とすることを考えると、このモデルはADAMによる高精度かつ高速なトレーニングを実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a novel model for invertible sentence embeddings using a
residual recurrent network trained on an unsupervised encoding task. Rather
than the probabilistic outputs common to neural machine translation models, our
approach employs a regression-based output layer to reconstruct the input
sequence's word vectors. The model achieves high accuracy and fast training
with the ADAM optimizer, a significant finding given that RNNs typically
require memory units, such as LSTMs, or second-order optimization methods. We
incorporate residual connections and introduce a "match drop" technique, where
gradients are calculated only for incorrect words. Our approach demonstrates
potential for various natural language processing applications, particularly in
neural network-based systems that require high-quality sentence embeddings.
- Abstract(参考訳): 本研究では,教師なし符号化タスクで訓練された残差再帰ネットワークを用いた逆行文埋め込みの新しいモデルを提案する。
ニューラルネットワーク翻訳モデルに共通する確率的出力ではなく、回帰に基づく出力層を用いて入力シーケンスのワードベクトルを再構成する。
このモデルはADAMオプティマイザによる高精度かつ高速なトレーニングを実現しており、LSTMや2階最適化などのメモリユニットを必要とすることが大きな発見である。
残差接続を導入し,不正確な単語に対してのみ勾配を計算する「マッチドロップ」手法を導入する。
提案手法は,高品質な文埋め込みを必要とするニューラルネットワークシステムにおいて,自然言語処理への応用の可能性を示す。
関連論文リスト
- Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - Convolutional Dictionary Learning by End-To-End Training of Iterative
Neural Networks [3.6280929178575994]
本研究では,教師付きおよび物理情報を用いたオンライン畳み込み辞書学習アルゴリズムとして利用可能な INN を構築する。
提案手法は,従来の2つのモデルに依存しない訓練法よりも改善され,深い INN と比較して競争結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-09T12:15:38Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Selfish Sparse RNN Training [13.165729746380816]
本稿では,1回のランでパラメータ数を固定したスパースRNNを,性能を損なうことなく訓練する手法を提案する。
我々はPenn TreeBankとWikitext-2の様々なデータセットを用いて最先端のスパーストレーニング結果を得る。
論文 参考訳(メタデータ) (2021-01-22T10:45:40Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Exploring Pre-training with Alignments for RNN Transducer based
End-to-End Speech Recognition [39.497407288772386]
リカレントニューラルネットワークトランスデューサ(RNN-T)アーキテクチャは、エンドツーエンドの自動音声認識研究において、新たなトレンドとなっている。
本研究では、外部アライメントを活用してRNN-Tモデルをシードする。
エンコーダ事前学習(encoder pre-training)と全ネットワーク事前学習( whole-network pre-training)と呼ばれる2つの異なる事前学習ソリューションが検討されている。
論文 参考訳(メタデータ) (2020-05-01T19:00:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。