Graph Neural Networks for the Offline Nanosatellite Task Scheduling
Problem
- URL: http://arxiv.org/abs/2303.13773v2
- Date: Wed, 20 Sep 2023 20:04:09 GMT
- Title: Graph Neural Networks for the Offline Nanosatellite Task Scheduling
Problem
- Authors: Bruno Machado Pacheco, Laio Oriel Seman, Cezar Antonio Rigo, Eduardo
Camponogara, Eduardo Augusto Bezerra, Leandro dos Santos Coelho
- Abstract summary: This study investigates how to schedule nanosatellite tasks more efficiently using Graph Neural Networks (GNNs)
The goal is to find the optimal schedule for tasks to be carried out in orbit while taking into account Quality-of-Service (QoS) considerations.
- Score: 7.20853603061523
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study investigates how to schedule nanosatellite tasks more efficiently
using Graph Neural Networks (GNNs). In the Offline Nanosatellite Task
Scheduling (ONTS) problem, the goal is to find the optimal schedule for tasks
to be carried out in orbit while taking into account Quality-of-Service (QoS)
considerations such as priority, minimum and maximum activation events,
execution time-frames, periods, and execution windows, as well as constraints
on the satellite's power resources and the complexity of energy harvesting and
management. The ONTS problem has been approached using conventional
mathematical formulations and exact methods, but their applicability to
challenging cases of the problem is limited. This study examines the use of
GNNs in this context, which has been effectively applied to optimization
problems such as the traveling salesman, scheduling, and facility placement
problems. More specifically, we investigate whether GNNs can learn the complex
structure of the ONTS problem with respect to feasibility and optimality of
candidate solutions. Furthermore, we evaluate using GNN-based heuristic
solutions to provide better solutions (w.r.t. the objective value) to the ONTS
problem and reduce the optimization cost. Our experiments show that GNNs are
not only able to learn feasibility and optimality for instances of the ONTS
problem, but they can generalize to harder instances than those seen during
training. Furthermore, the GNN-based heuristics improved the expected objective
value of the best solution found under the time limit in 45%, and reduced the
expected time to find a feasible solution in 35%, when compared to the SCIP
(Solving Constraint Integer Programs) solver in its off-the-shelf configuration
Related papers
- Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems [0.0]
Graph Neural Networks (GNNs) show promise for researchers in solving Combinatorial optimization (CO) problems.
This study investigates the effectiveness of GNNs in solving the maximum independent set (MIS) problem.
arXiv Detail & Related papers (2024-11-06T09:12:31Z) - Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
Constrained optimization problems arise in various engineering system operations such as inventory management electric power grids.
This work introduces a learning scheme using Bayesian Networks (BNNs) to solve constrained optimization problems under limited data and restricted model times.
We show that the proposed learning method outperforms conventional BNN and deep neural network (DNN) architectures.
arXiv Detail & Related papers (2024-10-04T02:10:20Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - BalMCTS: Balancing Objective Function and Search Nodes in MCTS for
Constraint Optimization Problems [7.196057722218442]
Constraint Problems Optimization (COP) pose intricate challenges in problems usually addressed through Branch and Bound (B&B) methods.
We propose a novel neural network algorithm based on a depth-first search algorithm for solving COP.
Our method identifies feasible solutions with a gap of less than 17.63% within the initial 5 feasible solutions.
arXiv Detail & Related papers (2023-12-26T03:09:08Z) - Learning to Solve Combinatorial Graph Partitioning Problems via
Efficient Exploration [72.15369769265398]
Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem.
Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73%.
arXiv Detail & Related papers (2022-05-27T17:13:10Z) - Robust Graph Neural Networks via Probabilistic Lipschitz Constraints [7.359962178534361]
Graph neural networks (GNNs) have recently been demonstrated to perform well on a variety of network-based tasks.
GNNs are susceptible to shifts and perturbations on their inputs, which can include both node attributes and graph structure.
arXiv Detail & Related papers (2021-12-14T17:33:32Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks [55.98291376393561]
Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
arXiv Detail & Related papers (2020-10-23T19:12:30Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.