Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks
- URL: http://arxiv.org/abs/2010.12621v1
- Date: Fri, 23 Oct 2020 19:12:30 GMT
- Title: Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks
- Authors: David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow
- Abstract summary: Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
- Score: 55.98291376393561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as a powerful tool for learning
software engineering tasks including code completion, bug finding, and program
repair. They benefit from leveraging program structure like control flow
graphs, but they are not well-suited to tasks like program execution that
require far more sequential reasoning steps than number of GNN propagation
steps. Recurrent neural networks (RNNs), on the other hand, are well-suited to
long sequential chains of reasoning, but they do not naturally incorporate
program structure and generally perform worse on the above tasks. Our aim is to
achieve the best of both worlds, and we do so by introducing a novel GNN
architecture, the Instruction Pointer Attention Graph Neural Networks
(IPA-GNN), which achieves improved systematic generalization on the task of
learning to execute programs using control flow graphs. The model arises by
considering RNNs operating on program traces with branch decisions as latent
variables. The IPA-GNN can be seen either as a continuous relaxation of the RNN
model or as a GNN variant more tailored to execution. To test the models, we
propose evaluating systematic generalization on learning to execute using
control flow graphs, which tests sequential reasoning and use of program
structure. More practically, we evaluate these models on the task of learning
to execute partial programs, as might arise if using the model as a heuristic
function in program synthesis. Results show that the IPA-GNN outperforms a
variety of RNN and GNN baselines on both tasks.
Related papers
- LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-05-22T18:17:20Z) - Characterizing the Efficiency of Graph Neural Network Frameworks with a
Magnifying Glass [10.839902229218577]
Graph neural networks (GNNs) have received great attention due to their success in various graph-related learning tasks.
Recent GNNs have been developed with different graph sampling techniques for mini-batch training of GNNs on large graphs.
It is unknown how much the frameworks are 'eco-friendly' from a green computing perspective.
arXiv Detail & Related papers (2022-11-06T04:22:19Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
Systems [4.1591055164123665]
We present IGNNITION, a novel open-source framework that enables fast prototyping of Graph Neural Networks (GNNs) for networking systems.
IGNNITION is based on an intuitive high-level abstraction that hides the complexity behind GNNs.
Our results show that the GNN models produced by IGNNITION are equivalent in terms of accuracy and performance to their native implementations.
arXiv Detail & Related papers (2021-09-14T14:28:21Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
We study the task of logical generalization using graph neural networks (GNNs)
Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics.
We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training.
arXiv Detail & Related papers (2020-03-14T05:45:55Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.