Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection
- URL: http://arxiv.org/abs/2303.13916v1
- Date: Fri, 24 Mar 2023 11:12:05 GMT
- Title: Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection
- Authors: Junji Otsuka, Masakazu Yoshimura, Takeshi Ohashi
- Abstract summary: We propose a self-supervised reversed ISP method that does not require metadata and paired images.
The proposed method converts a RGB image into a RAW-like image taken in the same environment with the same sensor as a reference RAW image.
We show that the proposed method is able to learn various reversed ISPs with comparable accuracy to other state-of-the-art supervised methods.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unprocessed sensor outputs (RAW images) potentially improve both low-level
and high-level computer vision algorithms, but the lack of large-scale RAW
image datasets is a barrier to research. Thus, reversed Image Signal Processing
(ISP) which converts existing RGB images into RAW images has been studied.
However, most existing methods require camera-specific metadata or paired RGB
and RAW images to model the conversion, and they are not always available. In
addition, there are issues in handling diverse ISPs and recovering global
illumination. To tackle these limitations, we propose a self-supervised
reversed ISP method that does not require metadata and paired images. The
proposed method converts a RGB image into a RAW-like image taken in the same
environment with the same sensor as a reference RAW image by dynamically
selecting parameters of the reversed ISP pipeline based on the reference RAW
image. The parameter selection is trained via pseudo paired data created from
unpaired RGB and RAW images. We show that the proposed method is able to learn
various reversed ISPs with comparable accuracy to other state-of-the-art
supervised methods and convert unknown RGB images from COCO and Flickr1M to
target RAW-like images more accurately in terms of pixel distribution. We also
demonstrate that our generated RAW images improve performance on real RAW image
object detection task.
Related papers
- Towards RAW Object Detection in Diverse Conditions [65.30190654593842]
We introduce the AODRaw dataset, which offers 7,785 high-resolution real RAW images with 135,601 annotated instances spanning 62 categories.
We find that sRGB pre-training constrains the potential of RAW object detection due to the domain gap between sRGB and RAW.
We distill the knowledge from an off-the-shelf model pre-trained on the sRGB domain to assist RAW pre-training.
arXiv Detail & Related papers (2024-11-24T01:23:04Z) - RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation [4.625376287612609]
We propose a novel diffusion-based method for generating RAW images guided by RGB images.
This approach yields high-fidelity RAW images, enabling the creation of camera-specific RAW datasets.
We extend our method to create BDD100K-RAW and Cityscapes-RAW datasets, revealing its effectiveness for object detection in RAW imagery.
arXiv Detail & Related papers (2024-11-20T09:40:12Z) - Unveiling Hidden Details: A RAW Data-Enhanced Paradigm for Real-World Super-Resolution [56.98910228239627]
Real-world image super-resolution (Real SR) aims to generate high-fidelity, detail-rich high-resolution (HR) images from low-resolution (LR) counterparts.
Existing Real SR methods primarily focus on generating details from the LR RGB domain, often leading to a lack of richness or fidelity in fine details.
We pioneer the use of details hidden in RAW data to complement existing RGB-only methods, yielding superior outputs.
arXiv Detail & Related papers (2024-11-16T13:29:50Z) - A Learnable Color Correction Matrix for RAW Reconstruction [19.394856071610604]
We introduce a learnable color correction matrix (CCM) to approximate the complex inverse image signal processor (ISP)
Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods.
arXiv Detail & Related papers (2024-09-04T07:46:42Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
We tackle blind image super-resolution in the RAW domain.
We design a realistic degradation pipeline tailored specifically for training models with raw sensor data.
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
arXiv Detail & Related papers (2023-12-24T14:17:28Z) - Efficient Visual Computing with Camera RAW Snapshots [41.9863557302409]
Conventional cameras capture image irradiance on a sensor and convert it to RGB images using an image signal processor (ISP)
One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing.
We propose a novel $rho$-Vision framework to perform high-level semantic understanding and low-level compression using RAW images.
arXiv Detail & Related papers (2022-12-15T12:54:21Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction.
We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
arXiv Detail & Related papers (2022-10-20T10:43:53Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
This paper presents a joint learning model for image alignment and RAW-to-sRGB mapping.
Experiments show that our method performs favorably against state-of-the-arts on ZRR and SR-RAW datasets.
arXiv Detail & Related papers (2021-08-18T12:41:36Z) - Invertible Image Signal Processing [42.109752151834456]
Invertible Image Signal Processing (InvISP) pipeline enables rendering visually appealing sRGB images.
We can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images without any memory overhead.
arXiv Detail & Related papers (2021-03-28T06:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.