RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation
- URL: http://arxiv.org/abs/2411.13150v1
- Date: Wed, 20 Nov 2024 09:40:12 GMT
- Title: RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation
- Authors: Christoph Reinders, Radu Berdan, Beril Besbinar, Junji Otsuka, Daisuke Iso,
- Abstract summary: We propose a novel diffusion-based method for generating RAW images guided by RGB images.
This approach yields high-fidelity RAW images, enabling the creation of camera-specific RAW datasets.
We extend our method to create BDD100K-RAW and Cityscapes-RAW datasets, revealing its effectiveness for object detection in RAW imagery.
- Score: 4.625376287612609
- License:
- Abstract: Current deep learning approaches in computer vision primarily focus on RGB data sacrificing information. In contrast, RAW images offer richer representation, which is crucial for precise recognition, particularly in challenging conditions like low-light environments. The resultant demand for comprehensive RAW image datasets contrasts with the labor-intensive process of creating specific datasets for individual sensors. To address this, we propose a novel diffusion-based method for generating RAW images guided by RGB images. Our approach integrates an RGB-guidance module for feature extraction from RGB inputs, then incorporates these features into the reverse diffusion process with RGB-guided residual blocks across various resolutions. This approach yields high-fidelity RAW images, enabling the creation of camera-specific RAW datasets. Our RGB2RAW experiments on four DSLR datasets demonstrate state-of-the-art performance. Moreover, RAW-Diffusion demonstrates exceptional data efficiency, achieving remarkable performance with as few as 25 training samples or even fewer. We extend our method to create BDD100K-RAW and Cityscapes-RAW datasets, revealing its effectiveness for object detection in RAW imagery, significantly reducing the amount of required RAW images.
Related papers
- Towards RAW Object Detection in Diverse Conditions [65.30190654593842]
We introduce the AODRaw dataset, which offers 7,785 high-resolution real RAW images with 135,601 annotated instances spanning 62 categories.
We find that sRGB pre-training constrains the potential of RAW object detection due to the domain gap between sRGB and RAW.
We distill the knowledge from an off-the-shelf model pre-trained on the sRGB domain to assist RAW pre-training.
arXiv Detail & Related papers (2024-11-24T01:23:04Z) - Unveiling Hidden Details: A RAW Data-Enhanced Paradigm for Real-World Super-Resolution [56.98910228239627]
Real-world image super-resolution (Real SR) aims to generate high-fidelity, detail-rich high-resolution (HR) images from low-resolution (LR) counterparts.
Existing Real SR methods primarily focus on generating details from the LR RGB domain, often leading to a lack of richness or fidelity in fine details.
We pioneer the use of details hidden in RAW data to complement existing RGB-only methods, yielding superior outputs.
arXiv Detail & Related papers (2024-11-16T13:29:50Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
We tackle blind image super-resolution in the RAW domain.
We design a realistic degradation pipeline tailored specifically for training models with raw sensor data.
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
arXiv Detail & Related papers (2023-12-24T14:17:28Z) - Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection [1.1602089225841632]
We propose a self-supervised reversed ISP method that does not require metadata and paired images.
The proposed method converts a RGB image into a RAW-like image taken in the same environment with the same sensor as a reference RAW image.
We show that the proposed method is able to learn various reversed ISPs with comparable accuracy to other state-of-the-art supervised methods.
arXiv Detail & Related papers (2023-03-24T11:12:05Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction.
We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
arXiv Detail & Related papers (2022-10-20T10:43:53Z) - Towards Low Light Enhancement with RAW Images [101.35754364753409]
We make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement.
We develop a new evaluation framework, Factorized Enhancement Model (FEM), which decomposes the properties of RAW images into measurable factors.
A RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications.
arXiv Detail & Related papers (2021-12-28T07:27:51Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
This paper presents a joint learning model for image alignment and RAW-to-sRGB mapping.
Experiments show that our method performs favorably against state-of-the-arts on ZRR and SR-RAW datasets.
arXiv Detail & Related papers (2021-08-18T12:41:36Z) - Invertible Image Signal Processing [42.109752151834456]
Invertible Image Signal Processing (InvISP) pipeline enables rendering visually appealing sRGB images.
We can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images without any memory overhead.
arXiv Detail & Related papers (2021-03-28T06:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.