Grid-guided Neural Radiance Fields for Large Urban Scenes
- URL: http://arxiv.org/abs/2303.14001v1
- Date: Fri, 24 Mar 2023 13:56:45 GMT
- Title: Grid-guided Neural Radiance Fields for Large Urban Scenes
- Authors: Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao,
Christian Theobalt, Bo Dai, Dahua Lin
- Abstract summary: Recent approaches propose to geographically divide the scene and adopt multiple sub-NeRFs to model each region individually.
An alternative solution is to use a feature grid representation, which is computationally efficient and can naturally scale to a large scene.
We present a new framework that realizes high-fidelity rendering on large urban scenes while being computationally efficient.
- Score: 146.06368329445857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purely MLP-based neural radiance fields (NeRF-based methods) often suffer
from underfitting with blurred renderings on large-scale scenes due to limited
model capacity. Recent approaches propose to geographically divide the scene
and adopt multiple sub-NeRFs to model each region individually, leading to
linear scale-up in training costs and the number of sub-NeRFs as the scene
expands. An alternative solution is to use a feature grid representation, which
is computationally efficient and can naturally scale to a large scene with
increased grid resolutions. However, the feature grid tends to be less
constrained and often reaches suboptimal solutions, producing noisy artifacts
in renderings, especially in regions with complex geometry and texture. In this
work, we present a new framework that realizes high-fidelity rendering on large
urban scenes while being computationally efficient. We propose to use a compact
multiresolution ground feature plane representation to coarsely capture the
scene, and complement it with positional encoding inputs through another NeRF
branch for rendering in a joint learning fashion. We show that such an
integration can utilize the advantages of two alternative solutions: a
light-weighted NeRF is sufficient, under the guidance of the feature grid
representation, to render photorealistic novel views with fine details; and the
jointly optimized ground feature planes, can meanwhile gain further
refinements, forming a more accurate and compact feature space and output much
more natural rendering results.
Related papers
- Aerial-NeRF: Adaptive Spatial Partitioning and Sampling for Large-Scale Aerial Rendering [10.340739248752516]
We propose Aerial-NeRF to render complex aerial scenes with high-precision.
Our model allows us to perform rendering over 4 times as fast as compared to multiple competitors.
New state-of-the-art results have been achieved on two public large-scale aerial datasets.
arXiv Detail & Related papers (2024-05-10T02:57:02Z) - BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial
Imagery [3.4956406636452626]
We introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery.
We present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps.
We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution.
arXiv Detail & Related papers (2024-02-07T03:18:34Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for
Enhanced Indoor View Synthesis [51.49008959209671]
We introduce VoxNeRF, a novel approach that leverages volumetric representations to enhance the quality and efficiency of indoor view synthesis.
We employ multi-resolution hash grids to adaptively capture spatial features, effectively managing occlusions and the intricate geometry of indoor scenes.
We validate our approach against three public indoor datasets and demonstrate that VoxNeRF outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-11-09T11:32:49Z) - Adaptive Multi-NeRF: Exploit Efficient Parallelism in Adaptive Multiple
Scale Neural Radiance Field Rendering [3.8200916793910973]
Recent advances in Neural Radiance Fields (NeRF) have demonstrated significant potential for representing 3D scene appearances as implicit neural networks.
However, the lengthy training and rendering process hinders the widespread adoption of this promising technique for real-time rendering applications.
We present an effective adaptive multi-NeRF method designed to accelerate the neural rendering process for large scenes.
arXiv Detail & Related papers (2023-10-03T08:34:49Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.