Adaptive Sparse Convolutional Networks with Global Context Enhancement
for Faster Object Detection on Drone Images
- URL: http://arxiv.org/abs/2303.14488v1
- Date: Sat, 25 Mar 2023 14:42:50 GMT
- Title: Adaptive Sparse Convolutional Networks with Global Context Enhancement
for Faster Object Detection on Drone Images
- Authors: Bowei Du, Yecheng Huang, Jiaxin Chen, Di Huang
- Abstract summary: This paper investigates optimizing the detection head based on the sparse convolution.
It suffers from inadequate integration of contextual information of tiny objects.
We propose a novel global context-enhanced adaptive sparse convolutional network.
- Score: 26.51970603200391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection on drone images with low-latency is an important but
challenging task on the resource-constrained unmanned aerial vehicle (UAV)
platform. This paper investigates optimizing the detection head based on the
sparse convolution, which proves effective in balancing the accuracy and
efficiency. Nevertheless, it suffers from inadequate integration of contextual
information of tiny objects as well as clumsy control of the mask ratio in the
presence of foreground with varying scales. To address the issues above, we
propose a novel global context-enhanced adaptive sparse convolutional network
(CEASC). It first develops a context-enhanced group normalization (CE-GN)
layer, by replacing the statistics based on sparsely sampled features with the
global contextual ones, and then designs an adaptive multi-layer masking
strategy to generate optimal mask ratios at distinct scales for compact
foreground coverage, promoting both the accuracy and efficiency. Extensive
experimental results on two major benchmarks, i.e. VisDrone and UAVDT,
demonstrate that CEASC remarkably reduces the GFLOPs and accelerates the
inference procedure when plugging into the typical state-of-the-art detection
frameworks (e.g. RetinaNet and GFL V1) with competitive performance. Code is
available at https://github.com/Cuogeihong/CEASC.
Related papers
- Scale-Invariant Object Detection by Adaptive Convolution with Unified Global-Local Context [3.061662434597098]
We propose an object detection model using a Switchable (adaptive) Atrous Convolutional Network (SAC-Net) based on the efficientDet model.
The proposed SAC-Net encapsulates the benefits of both low-level and high-level features to achieve improved performance on multi-scale object detection tasks.
Our experiments on benchmark datasets demonstrate that the proposed SAC-Net outperforms the state-of-the-art models by a significant margin in terms of accuracy.
arXiv Detail & Related papers (2024-09-17T10:08:37Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold [13.379416816598873]
This paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA)
The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem.
In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise.
arXiv Detail & Related papers (2022-11-30T09:55:45Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Enhancing Object Detection for Autonomous Driving by Optimizing Anchor
Generation and Addressing Class Imbalance [0.0]
This study presents an enhanced 2D object detector based on Faster R-CNN that is better suited for the context of autonomous vehicles.
The proposed modifications over the Faster R-CNN do not increase computational cost and can easily be extended to optimize other anchor-based detection frameworks.
arXiv Detail & Related papers (2021-04-08T16:58:31Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.